Hyper-spectral frequency selection for the classification of vegetation diseases
نویسنده
چکیده
Reducing the use of pesticides by early visual detection of diseases in precision agriculture is important. Because of the color similarity between potato-plant diseases, narrow band hyper-spectral imaging is required. Payload constraints on unmanned aerial vehicles require reduction of spectral bands. Therefore, we present a methodology for per-patch classification combined with hyper-spectral band selection. In controlled experiments performed on a set of individual leaves, we measure the performance of five classifiers and three dimensionality-reduction methods with three patch sizes. With the best-performing classifier an error rate of 1.5% is achieved for distinguishing two important potato-plant diseases.
منابع مشابه
تعیین ماشینهای بردار پشتیبان بهینه در طبقهبندی تصاویر فرا طیفی بر مبنای الگوریتم ژنتیک
Hyper spectral remote sensing imagery, due to its rich source of spectral information provides an efficient tool for ground classifications in complex geographical areas with similar classes. Referring to robustness of Support Vector Machines (SVMs) in high dimensional space, they are efficient tool for classification of hyper spectral imagery. However, there are two optimization issues which s...
متن کاملUrban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data
Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...
متن کاملDetection of Corn and Weed Species by the Combination of Spectral, Shape and Textural Features
Accurate detection of weeds in farmland can help reduce pesticide use and protect the agricultural environment. To develop intelligent equipment for weed detection, this study used an imaging spectrometer system, which supports micro-scale plant feature analysis by acquiring high-resolution hyper spectral images of corn and a number of weed species in the laboratory. For the analysis, the objec...
متن کاملاستخراج ویژگی در تصاویر ابرطیفی به کمک برازش منحنی با توابع گویا
In this paper, with due respect to the original data and based on the extraction of new features by smaller dimensions, a new feature reduction technique is proposed for Hyper-Spectral data classification. For each pixel of a Hyper-Spectral image, a specific rational function approximation is developed to fit its own spectral response curve (SRC) and the coefficients of the numerator and denomi...
متن کاملDetermining the effective features in classification of heart sounds using trained intelligent network and genetic algorithm
Heart diseases are among the most important causes of mortality in the world, especially in industrial countries. Using heart sounds and the features extracted from them are among the non-aggressive diagnosis and prognosis methods for heart diseases. In this study, the time-scale, Cepstral, frequency, temporal and turbulence features are saved and extracted from the heart sounds, and then they ...
متن کامل