A Theory for Coloring Walks in a Digraph

نویسنده

  • Seth Chaiken
چکیده

Consider edge colorings of directed graphs where edges of the form v1v2 and v2v3 must have different colors. Here, v1 ≠ v2 , v2 ≠ v3 but v1 = v3 is possible. It is known that this coloring induces a vertex coloring by sets of edge colors, in which edge v1v2 in the graph implies that the set color of v1 contains an element not in the set color of v2; conversely, each such set coloring of vertices induces one or more edge colorings. We show that these relationships generalize to colorings of of k(vertex)-walks in which two k-walks have different colors if one is the prefix and the other is the suffix of a common (k+1)-walk. For full generality the colors belong to a partially ordered set P; and the prefix color c1 and the suffix color c2 must satisfy c1 ≤| c2 . The set color construction generalizes to generating the lower order ideal in P from a set of k-walk colors; these order ideals (antichains in P, equivalently) are partially ordered by containment. We conclude that a P coloring of k-walks exists if and only if there is a vertex coloring by Ak−1(P), where A is the operator that maps a poset to its poset of lower order ideals, due to Birkhoff. In the case when the graph G is symmetric, this condition means that the largest antichain size (Dilworth

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The circular chromatic number of a digraph

We introduce the circular chromatic number χc of a digraph and establish various basic results. They show that the coloring theory for digraphs is similar to the coloring theory for undirected graphs when independent sets of vertices are replaced by acyclic sets. Since the directed k-cycle has circular chromatic number k/(k − 1), for k ≥ 2, values of χc between 1 and 2 are possible. We show tha...

متن کامل

On the complexity of $\mathbb H$-coloring for special oriented trees

For a fixed digraph H, the H-coloring problem is the problem of deciding whether a given input digraph G admits a homomorphism to H. The CSP dichotomy conjecture of Feder and Vardi is equivalent to proving that, for any H, the H-coloring problem is in in P or NP-complete. We confirm this dichotomy for a certain class of oriented trees, which we call special trees (generalizing earlier results o...

متن کامل

Hamiltonian-colored powers of strong digraphs

For a strong oriented graph D of order n and diameter d and an integer k with 1 ≤ k ≤ d, the kth power D of D is that digraph having vertex set V (D) with the property that (u, v) is an arc of D if the directed distance ~ dD(u, v) from u to v in D is at most k. For every strong digraph D of order n ≥ 2 and every integer k ≥ ⌈n/2⌉, the digraph D is Hamiltonian and the lower bound ⌈n/2⌉ is sharp....

متن کامل

A short construction of highly chromatic digraphs without short cycles

A natural digraph analogue of the graph-theoretic concept of an ‘independent set’ is that of an ‘acyclic set’, namely a set of vertices not spanning a directed cycle. Hence a digraph analogue of a graph coloring is a decomposition of the vertex set into acyclic sets. In the spirit of a famous theorem of P. Erdős [Graph theory and probability, Canad. J. Math. 11 (1959), 34–38], it was shown prob...

متن کامل

A PRELUDE TO THE THEORY OF RANDOM WALKS IN RANDOM ENVIRONMENTS

A random walk on a lattice is one of the most fundamental models in probability theory. When the random walk is inhomogenous and its inhomogeniety comes from an ergodic stationary process, the walk is called a random walk in a random environment (RWRE). The basic questions such as the law of large numbers (LLN), the central limit theorem (CLT), and the large deviation principle (LDP) are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007