Plasmonic light-sensitive skins of nanocrystal monolayers.

نویسندگان

  • Shahab Akhavan
  • Kivanc Gungor
  • Evren Mutlugun
  • Hilmi Volkan Demir
چکیده

We report plasmonically coupled light-sensitive skins of nanocrystal monolayers that exhibit sensitivity enhancement and spectral range extension with plasmonic nanostructures embedded in their photosensitive nanocrystal platforms. The deposited plasmonic silver nanoparticles of the device increase the optical absorption of a CdTe nanocrystal monolayer incorporated in the device. Controlled separation of these metallic nanoparticles in the vicinity of semiconductor nanocrystals enables optimization of the photovoltage buildup in the proposed nanostructure platform. The enhancement factor was found to depend on the excitation wavelength. We observed broadband sensitivity improvement (across 400-650 nm), with a 2.6-fold enhancement factor around the localized plasmon resonance peak. The simulation results were found to agree well with the experimental data. Such plasmonically enhanced nanocrystal skins hold great promise for large-area UV/visible sensing applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanocrystal skins with exciton funneling for photosensing.

Highly photosensitive nanocrystal (NC) skins based on exciton funneling are proposed and demonstrated using a graded bandgap profile across which no external bias is applied in operation for light-sensing. Four types of gradient NC skin devices (GNS) made of NC monolayers of distinct sizes with photovoltage readout are fabricated and comparatively studied. In all structures, polyelectrolyte pol...

متن کامل

Flexible and fragmentable tandem photosensitive nanocrystal skins.

We proposed and demonstrated the first account of large-area, semi-transparent, tandem photosensitive nanocrystal skins (PNSs) constructed on flexible substrates operating on the principle of photogenerated potential buildup, which avoid the need for applying an external bias and circumvent the current-matching limitation between junctions. We successfully fabricated and operated the tandem PNS...

متن کامل

Engineering of core/shell nanoparticles surface plasmon for increasing of light penetration depth in tissue (modeling and analysis)

Objectives: In this article, a new procedure for increasing the light penetration depth in a tissue is studied and simulated. It has been reported that the most important problem in biomedical optical imaging relates to the light penetration depth, and so this makes a dramatic restriction on its applications. In the optical imaging method, the detection of the backscattered pho...

متن کامل

Plasmonics-enhanced metal–organic framework nanoporous films for highly sensitive near-infrared absorption†

Combined plasmonic nanocrystals and metal–organic framework thin-films are fabricated for sensing gases in the near-infrared range. This nanocomposite thin-film shows a highly sensitive response in near-infrared absorption, which is attributed to preconcentration of gas molecules in metal–organic framework pores causing close proximity to the electromagnetic fields at the plasmonic nanocrystal ...

متن کامل

Absorption of light in a single-nanowire silicon solar cell decorated with an octahedral silver nanocrystal.

In recent photovoltaic research, nanomaterials have offered two new approaches for trapping light within solar cells to increase their absorption: nanostructuring the absorbing semiconductor and using metallic nanostructures to couple light into the absorbing layer. This work combines these two approaches by decorating a single-nanowire silicon solar cell with an octahedral silver nanocrystal. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 24 15  شماره 

صفحات  -

تاریخ انتشار 2013