The role of enemy release, tolerance and resistance in plant invasions: linking damage to performance.
نویسندگان
چکیده
An explanation for successful invasion is that invasive alien species sustain less pressure from natural enemies than co-occurring native species. Using meta-analysis, we examined whether invasive species: (1) incur less damage, (2) exhibit better performance in the presence of enemies, and (3) tolerate damage more than native species. Invasive alien species did not incur less damage than native species overall. The performance of invasive alien species was reduced compared to natives in the presence of enemies, indicating the invasive alien species were less tolerant to damage than native species. However, there was no overall difference in performance of invasive alien and native species with enemies present. The damage and degree of reduction in performance of invasive alien relative to native species did not depend on relatedness to natives. Our results suggest aliens may not always experience enemy release, and enemy release may not always result in greater plant performance.
منابع مشابه
Are invaders moving targets? The generality and persistence of advantages in size, reproduction, and enemy release in invasive plant species with time since introduction.
Successful plant invasions are often attributed to increased plant size, reproduction, or release from natural enemies, but the generality and persistence of these patterns remains widely debated. Meta-analysis was used to quantitatively assess invasive plant performance and release from enemy damage and how these change with residence time and geographic distribution. Invasive plants were comp...
متن کاملSPECIAL ISSUE: Using Non-Model Systems to Explore Plant–Pollinator and Plant–Herbivore Interactions Natural selection on plant resistance to herbivores in the native and introduced range
When plants are introduced into new regions, the absence of their co-evolved natural enemies can result in lower levels of attack. As a consequence of this reduction in enemy pressure, plant performance may increase and selection for resistance to enemies may decrease. In the present study, we compared leaf damage, plant size and leaf trichome density, as well as the direction and magnitude of ...
متن کاملNatural selection on plant resistance to herbivores in the native and introduced range
When plants are introduced into new regions, the absence of their co-evolved natural enemies can result in lower levels of attack. As a consequence of this reduction in enemy pressure, plant performance may increase and selection for resistance to enemies may decrease. In the present study, we compared leaf damage, plant size and leaf trichome density, as well as the direction and magnitude of ...
متن کاملApproaches for testing herbivore effects on plant population dynamics
1. As plant invasions pose one of the greatest threats to biodiversity, it is critical to improve both our understanding of invasiveness and strategies for control. Much research into plant invasions and their management, including biological control, assumes strong demographic effects by natural enemies, including herbivores. However, the importance of natural enemies in the regulation of plan...
متن کاملIn Situ Cross-Linking of Polyanionic Polymers to Sustain the Drug Release from Theophylline Tablets
The aim of this study was to develop an extended-release tablet formulation using a new in situ cross-linking method. The effects of polyvalent cations on theophylline release from tablets made with the polyanionic polymers sodium alginate and sodium carboxymethylcellulose, were investigated. Different miliequivalents of the di and tri-valent cation, Ca2+ and Al3+, were added to tablet form...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ecology letters
دوره 13 8 شماره
صفحات -
تاریخ انتشار 2010