Pattern Recognition by detection of local symmetries

نویسندگان

  • Josef Bigun
  • Josef BIGUN
چکیده

The symmetries in a neighbourhood of a gray value image are modelled by conjugate harmonic function pairs. These are shown to be a suitable curve linear coordinate pair, in which the model represents a neighbourhood. In this representation the image parts, which are symmetric with respect to the chosen function pair, have iso-gray value curves which are simple lines or parallel line patterns. The detection is modelled in the special Fourier domain corresponding to the new variables by minimizing an error function. It is shown that the minimization process or detection of these patterns can be carried out for the whole image entirely in the spatial domain by convolutions. What will be defined as the partial derivative image is the image which takes part in the convolution. The convolution kernel is complex valued, as are the partial derivative image and the result. The magnitudes of the result are shown to correspond to a well defined certainty measure, while the orientation is the least square estimate of an orientation in the Fourier transform corresponding to the harmonic coordinates. Applications to four symmetries are given. These are circular, linear, hyperbolic and parabolic symmetries. Experimental results are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust detection of skewed symmetries by combining local and semi-local affine invariants

A$ne-invariant feature vector (Ip and Shen Image Vision Comput. 16 (2) (1998) 135}146), that captures both local and semi-local geometric features around each point of the object boundary is applied here for the detection of skewed symmetries. Based on the a$ne-invariant shape representation, the problem of detecting symmetry axes has been formulated as a problem of detecting lines, with known ...

متن کامل

Local gradient pattern - A novel feature representation for facial expression recognition

Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...

متن کامل

Local Derivative Pattern with Smart Thresholding: Local Composition Derivative Pattern for Palmprint Matching

Palmprint recognition is a new biometrics system based on physiological characteristics of the palmprint, which includes rich, stable, and unique features such as lines, points, and texture. Texture is one of the most important features extracted from low resolution images. In this paper, a new local descriptor, Local Composition Derivative Pattern (LCDP) is proposed to extract smartly stronger...

متن کامل

Symmetry detection based on multiscale pairwise texture boundary segment interactions

In this paper, we propose a new unsupervised and simple approach to local symmetry detection of ribbon-like structure in natural images. The proposed model consists in quantifying the presence of a partial medial axis segment, existing between each pair of (preliminary detected) line segments delineating the boundary of two textured regions, by a set of heuristics related both to the geometrica...

متن کامل

Shape Palindromes: Analysis of Intrinsic Symmetries in 2D Articulated Shapes

Analysis of intrinsic symmetries of non-rigid and articulated shapes is an important problem in pattern recognition with numerous applications ranging from medicine to computational aesthetics. Considering articulated planar shapes as closed curves, we show how to represent their extrinsic and intrinsic symmetries as self-similarities of local descriptor sequences, which in turn have simple int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014