Point-Set Embeddability of 2-Colored Trees

نویسندگان

  • Fabrizio Frati
  • Marc Glisse
  • William J. Lenhart
  • Giuseppe Liotta
  • Tamara Mchedlidze
  • Rahnuma Islam Nishat
چکیده

In this paper we study bichromatic point-set embeddings of 2-colored trees on 2-colored point sets, i.e., point-set embeddings of trees (whose vertices are colored red and blue) on point sets (whose points are colored red and blue) such that each red (blue) vertex is mapped to a red (resp. blue) point. We prove that deciding whether a given 2-colored tree admits a bichromatic point-set embedding on a given convex point set is an NP-complete problem; we also show that the same problem is linear-time solvable if the convex point set does not contain two consecutive points with the same color. Furthermore, we prove a 3n/2 − O(1) lower bound and a 2n upper bound (a 7n/6 − O(log n) lower bound and a 4n/3 upper bound) on the minimum size of a universal point set for straight-line bichromatic embeddings of 2-colored trees (resp. 2-colored binary trees). Finally, we show that universal convex point sets with n points exist for 1-bend bichromatic point-set embeddings of 2-colored trees.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Upward Point-Set Embeddability

We study the problem of Upward Point-Set Embeddability, that is the problem of deciding whether a given upward planar digraph D has an upward planar embedding into a point set S. We show that any switch tree admits an upward planar straight-line embedding into any convex point set. For the class of k-switch trees, that is a generalization of switch trees (according to this definition a switch t...

متن کامل

On Embeddability of Buses in Point Sets

Set membership of points in the plane can be visualized by connecting corresponding points via graphical features, like paths, trees, polygons, ellipses. In this paper we study the bus embeddability problem (BEP): given a set of colored points we ask whether there exists a planar realization with one horizontal straight-line segment per color, called bus, such that all points with the same colo...

متن کامل

The descriptive set-theoretical complexity of the embeddability relation on models of large size

We show that if κ is a weakly compact cardinal then the embeddability relation on (generalized) trees of size κ is invariantly universal. This means that for every analytic quasi-order on the generalized Cantor space 2 there is an Lκ+κsentence φ such that the embeddability relation on its models of size κ, which are all trees, is Borel bireducible (and, in fact, classwise Borel isomorphic) to R...

متن کامل

Plane 3-trees: Embeddability & Approximation

We give anO(n log n)-time linear-space algorithm that, given a plane 3-tree G with n vertices and a set S of n points in the plane, determines whether G has a point-set embedding on S (i.e., a planar straight-line drawing of G where each vertex is mapped to a distinct point of S), improving the O(n)-time O(n)-space algorithm of Moosa and Rahman. Given an arbitrary plane graph G and a point set ...

متن کامل

Complexity of Planar Embeddability of Trees inside Simple Polygons

Geometric embedding of graphs in a point set in the plane is a well known problem. In this paper, the complexity of a variant of this problem, where the point set is bounded by a simple polygon, is considered. Given a point set in the plane bounded by a simple polygon and a free tree, we show that deciding whether there is a planar straight-line embedding of the tree on the point set inside the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012