Use of an unsaturated fatty acid auxotroph of Saccharomyces cerevisiae to modify the lipid composition and function of mitochondrial membranes.

نویسندگان

  • B S Tung
  • E R Unger
  • B Levin
  • T A Brasitus
  • G S Getz
چکیده

KD115 (ol1), an unsaturated fatty acid auxotroph of S. cerevisiae, was grown in a semi-synthetic medium supplemented with 3.3 x 10(-4) M palmitoleic (cis 16:1) or palmitelaidic (trans 16:1) acids. The parent strain S288C was studied as a control. The lipid composition (fatty acids, neutral lipids, and phospholipids), respiratory activity (O2 consumption), and ultrastructure were compared in mutant yeast grown with each unsaturated fatty acid supplement. The fatty acid supplement represented 70-80% of the yeast fatty acids. Yeast grown in trans 16:1 contained more squalene, a higher ratio of phosphatidylethanolamine (PE) to phosphatidylcholine (PC), and had 10-20% of the respiratory activity compared to the same yeast grown in cis 16:1. The mitochondrial morphology of yeast in each growth supplement was notably different. The use of mixtures of cis and trans 16:1 in different proportions revealed that the PE/PC ratio, the squalene content, the respiratory defect, and the mitochondrial morphology were all similarly dependent on the fraction of trans 16:1 in the mixtures. As little as 10-20% of cis 16:1 in the mixture was sufficient to abrogate the physiological effects of trans 16:1 on each of the parameters noted above. The combined effects of high content of trans unsaturated fatty acid and the altered phospholipid composition seem to account for the decrease in lipid fluidity, the defective structure and function of the mitochondrial membrane.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Membrane-lipid unsaturation and mitochondrial function in Saacharomyces cerevisiae.

The lipid composition of yeast cells was manipulated by the use of an unsaturated fatty acid auxotroph of Saccharomyces cerevisiae. There was a 2-3-fold decrease in the concentration of cytochromes a+a3 when the unsaturated fatty acid content of the cells was decreased from 60-70% of the total fatty acid to 20-30%. The amounts of cytochromes b and c were also decreased under these conditions, b...

متن کامل

The manipulation of cellular cytochrome and lipid composition in a haem mutant of Saccharomyces cerevisiae.

1. The ole-3 mutant of Saccharomyces cerevisiae has an early lesion in the pathway of porphyrin biosynthesis. 2. This results in the loss of all haem-containing enzymes, including the mitochondrial cytochromes, and prevents the synthesis of components whose formation requires haem-containing enzymes, including unsaturated fatty acids, ergosterol and methionine. 3. The pleiotropic effects of the...

متن کامل

The effect of changed sterol composition on the kinetics of mitochondrial membrane enzymes in the yeast Saccharomyces cerevisiae [proceedings].

The effect of sterols on the kinetics of membrane-bound enzymes was examined. Two strains of the yeast Saccharomyces cerevisiae were used for this purpose: the wild-type haploid strain, S288C, and the lipid auxotroph mutant Ole-3 (Resnick & Mortimer, 1966). The primary lesion in the Ole-3 mutant is the loss of 8-aminolaevulinate synthetase (EC 2.3.1.37) (Woods et al., 1975). Consequently, the m...

متن کامل

Effect of cryopreservation on lipid composition and antioxidant enzyme activity of seabass (Lates calcarifer) sperm

Cryopreservation of seabass (Lates calcarifer) semen is an approach to increase the quantity and quality of seabass fry in aquaculture. However, cold shock can induce sperm injury leading to structural damage of the plasma membrane and loss of motility. Thus, the effect of cryopreservation on fatty acid composition and antioxidant enzyme activities of seabass sperm was determined. In cryopreser...

متن کامل

Unsaturated fatty acid mutants of Saccharomyces cerevisiae.

Resnick, Michael A. (University of California, Berkeley), and Robert K. Mortimer. Unsaturated fatty acid mutants of Saccharomyces cerevisiae. J. Bacteriol. 92:597-600. 1966.-The wild type of the yeast Saccharomyces cerevisiae does not require fatty acids or sterols for growth. Two types of lipid nutritional mutants have been induced in this organism. One of these classes of mutants requires an ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of lipid research

دوره 32 6  شماره 

صفحات  -

تاریخ انتشار 1991