Acid-sensing ion channels interact with and inhibit BK K+ channels.

نویسندگان

  • Elena Yermolaieva Petroff
  • Margaret P Price
  • Vladislav Snitsarev
  • Huiyu Gong
  • Victoria Korovkina
  • Francois M Abboud
  • Michael J Welsh
چکیده

Acid-sensing ion channels (ASICs) are neuronal non-voltage-gated cation channels that are activated when extracellular pH falls. They contribute to sensory function and nociception in the peripheral nervous system, and in the brain they contribute to synaptic plasticity and fear responses. Some of the physiologic consequences of disrupting ASIC genes in mice suggested that ASIC channels might modulate neuronal function by mechanisms in addition to their H(+)-evoked opening. Within ASIC channel's large extracellular domain, we identified sequence resembling that in scorpion toxins that inhibit K(+) channels. Therefore, we tested the hypothesis that ASIC channels might inhibit K(+) channel function by coexpressing ASIC1a and the high-conductance Ca(2+)- and voltage-activated K(+) (BK) channel. We found that ASIC1a associated with BK channels and inhibited their current. Reducing extracellular pH disrupted the association and relieved the inhibition. BK channels, in turn, altered the kinetics of ASIC1a current. In addition to BK, ASIC1a inhibited voltage-gated Kv1.3 channels. Other ASIC channels also inhibited BK, although acidosis-dependent relief of inhibition varied. These results reveal a mechanism of ion channel interaction and reciprocal regulation. Finding that a reduced pH activated ASIC1a and relieved BK inhibition suggests that extracellular protons may enhance the activity of channels with opposing effects on membrane voltage. The wide and varied expression patterns of ASICs, BK, and related K(+) channels suggest broad opportunities for this signaling system to alter neuronal function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acid sensing ion channels regulate neuronal excitability by inhibiting BK potassium channels.

Acid sensing ion channels (ASICs), Ca(2+) and voltage-activated potassium channels (BK) are widely present throughout the central nervous system. Previous studies have shown that when expressed together in heterologous cells, ASICs inhibit BK channels, and this inhibition is relieved by acidic extracellular pH. We hypothesized that ASIC and BK channels might interact in neurons, and that ASICs ...

متن کامل

Oxygen sensing with ion channels

pAper type 290 Channels Volume 8 Issue 4 AutoCommentAry A decrease in arterial O 2 pressure (pO 2) elicits a peripheral chemosensory reflex that increases ventilation and sympathetic nerve activity. This reflex is initiated at the carotid body glomus (Type 1) cells where the reduced pO 2 alters the activities of various ion channels and causes cell depolarization. The depolarization opens the v...

متن کامل

Large conductance Ca2+-activated K+ (BK) channel: activation by Ca2+ and voltage.

Large conductance Ca2+-activated K+ (BK) channels belong to the S4 superfamily of K+ channels that include voltage-dependent K+ (Kv) channels characterized by having six (S1-S6) transmembrane domains and a positively charged S4 domain. As Kv channels, BK channels contain a S4 domain, but they have an extra (S0) transmembrane domain that leads to an external NH2-terminus. The BK channel is activ...

متن کامل

A Role for BK Channels in Heart Rate Regulation in Rodents

The heart generates and propagates action potentials through synchronized activation of ion channels allowing inward Na(+) and Ca(2+) and outward K(+) currents. There are a number of K(+) channel types expressed in the heart that play key roles in regulating the cardiac cycle. Large conductance calcium-activated potassium (BK) ion channels are not thought to be directly involved in heart functi...

متن کامل

Gating modifier toxins reveal a conserved structural motif in voltage-gated Ca2+ and K+ channels.

Protein toxins from venomous animals exhibit remarkably specific and selective interactions with a wide variety of ion channels. Hanatoxin and grammotoxin are two related protein toxins found in the venom of the Chilean Rose Tarantula, Phrixotrichus spatulata. Hanatoxin inhibits voltage-gated K+ channels and grammotoxin inhibits voltage-gated Ca2+ channels. Both toxins inhibit their respective ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 8  شماره 

صفحات  -

تاریخ انتشار 2008