Atm and Bax cooperate in ionizing radiation-induced apoptosis in the central nervous system.

نویسندگان

  • M J Chong
  • M R Murray
  • E C Gosink
  • H R Russell
  • A Srinivasan
  • M Kapsetaki
  • S J Korsmeyer
  • P J McKinnon
چکیده

Ataxia-telangiectasia is a hereditary multisystemic disease resulting from mutations of ataxia telangiectasia, mutated (ATM) and is characterized by neurodegeneration, cancer, immune defects, and hypersensitivity to ionizing radiation. The molecular details of ATM function in the nervous system are unclear, although the neurological lesion in ataxia-telangiectasia becomes apparent early in life, suggesting a developmental origin. The central nervous system (CNS) of Atm-null mice shows a pronounced defect in apoptosis induced by genotoxic stress, suggesting ATM functions to eliminate neurons with excessive genomic damage. Here, we report that the death effector Bax is required for a large proportion of Atm-dependent apoptosis in the developing CNS after ionizing radiation (IR). Although many of the same regions of the CNS in both Bax-/- and Atm-/- mice were radioresistant, mice nullizygous for both Bax and Atm showed additional reduction in IR-induced apoptosis in the CNS. Therefore, although the major IR-induced apoptotic pathway in the CNS requires Atm and Bax, a p53-dependent collateral pathway exists that has both Atm- and Bax-independent branches. Further, Atm- and Bax-dependent apoptosis in the CNS also required caspase-3 activation. These data implicate Bax and caspase-3 as death effectors in neurodegenerative pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of quercetin on ionizing radiation-induced cellular responses in HepG2 cells

Background: Quercetin has been reported to modulate cell proliferation and apoptosis. The present study aimed at identifying whether treatment of ionizing radiation (IR) combined with quercetin induces apoptosis in HepG2 cells. Materials and Methods: HepG2 cells were plated at an appropriate density according to each experimental scale and irradiated with 1, 5 and 10 Gy gamma-rays from a 60Co s...

متن کامل

Ataxia-telangiectasia mutated is not required for p53 induction and apoptosis in irradiated epithelial tissues.

The ataxia-telangiectasia mutated (Atm) protein kinase is a central regulator of the cellular response to DNA damage. Although Atm can regulate p53, it is not known if this Atm function varies between tissues. Previous studies showed that the induction of p53 and apoptosis by whole-body ionizing radiation varies greatly between tissue and tumor types, so here we asked if Atm also had a tissue-s...

متن کامل

Chk2 is a tumor suppressor that regulates apoptosis in both an ataxia telangiectasia mutated (ATM)-dependent and an ATM-independent manner.

In response to ionizing radiation (IR), the tumor suppressor p53 is stabilized and promotes either cell cycle arrest or apoptosis. Chk2 activated by IR contributes to this stabilization, possibly by direct phosphorylation. Like p53, Chk2 is mutated in patients with Li-Fraumeni syndrome. Since the ataxia telangiectasia mutated (ATM) gene is required for IR-induced activation of Chk2, it has been...

متن کامل

Ataxia-telangiectasia mutated kinase (ATM) as a central regulator of radiation-induced DNA damage response.

Ataxia-telangiectasia mutated kinase (ATM) is a DNA damage-inducible protein kinase, which phosphorylates plethora of substrates participating in DNA damage response. ATM significance for the cell faith is undeniable, since it regulates DNA repair, cell-cycle progress, and apoptosis. Here we describe its main signalling targets and discuss its importance in DNA repair as well as novel findings ...

متن کامل

Synergistic Effects of Arsenic Trioxide and Radiation: Triggering the Intrinsic Pathway of Apoptosis

Background: Arsenic trioxide (ATO) has been reported as an effective anti-cancer and a US Food and Drug Administration (FDA) approved drug for treatment of some cancers. The aim of this study is to determine the underlying apoptosis molecular and cellular mechanisms of ATO in the presence or absence of ionizing radiation (IR) in vitro in the glioblastoma multiforme (GBM) cell line, U87MG. Metho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 97 2  شماره 

صفحات  -

تاریخ انتشار 2000