Constitutive gain-of-function mutants in a nucleotide binding site-leucine rich repeat protein encoded at the Rx locus of potato.

نویسندگان

  • Abdelhafid Bendahmane
  • Garry Farnham
  • Peter Moffett
  • David C Baulcombe
چکیده

Rx in potato encodes a protein with a nucleotide binding site (NBS) and leucine-rich repeats (LRR) that confers resistance against Potato virus X. The NBS and LRR domains in Rx are present in many disease resistance proteins in plants and in regulators of apoptosis in animals. To investigate structure-function relationships of NBS-LRR proteins we exploited the potential of Rx to mediate a cell death response. With wild-type Rx cell death is elicited only in the presence of the viral coat protein. However, following random mutagenesis of Rx, we identified mutants in which cell death is activated in the absence of viral coat protein. Out of 2500 Rx clones tested there were seven constitutive gain-of-function mutants carrying eight independent mutations. The mutations encoded changes in the LRR or in conserved RNBS-D and MHD motifs of the NBS. Based on these findings we propose that there are inhibitory domains in the NBS and LRR. The constitutive gain-of-function phenotypes would be due to deletion or modification of these inhibitory domains. However activation of Rx is not simply release of negative regulation by the LRR and adjacent sequence because deleted forms of Rx that lack constitutive gain of function mutations are not active unless the protein is overexpressed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RanGAP2 mediates nucleocytoplasmic partitioning of the NB-LRR immune receptor Rx in the Solanaceae, thereby dictating Rx function.

The potato (Solanum tuberosum) nucleotide binding-leucine-rich repeat immune receptor Rx confers resistance to Potato virus X (PVX) and requires Ran GTPase-activating protein 2 (RanGAP2) for effective immune signaling. Although Rx does not contain a discernible nuclear localization signal, the protein localizes to both the cytoplasm and nucleus in Nicotiana benthamiana. Transient coexpression o...

متن کامل

The coiled-coil and nucleotide binding domains of the Potato Rx disease resistance protein function in pathogen recognition and signaling.

Plant genomes encode large numbers of nucleotide binding and leucine-rich repeat (NB-LRR) proteins, some of which mediate the recognition of pathogen-encoded proteins. Following recognition, the initiation of a resistance response is thought to be mediated by the domains present at the N termini of NB-LRR proteins, either a Toll and Interleukin-1 Receptor or a coiled-coil (CC) domain. In order ...

متن کامل

Stepwise artificial evolution of a plant disease resistance gene.

Genes encoding plant nucleotide-binding leucine-rich repeat (NB-LRR) proteins confer dominant resistance to diverse pathogens. The wild-type potato NB-LRR protein Rx confers resistance against a single strain of potato virus X (PVX), whereas LRR mutants protect against both a second PVX strain and the distantly related poplar mosaic virus (PopMV). In one of the Rx mutants there was a cost to th...

متن کامل

Artificial evolution extends the spectrum of viruses that are targeted by a disease-resistance gene from potato.

A major class of disease-resistance (R) genes in plants encode nucleotide-binding site/leucine-rich repeat (LRR) proteins. The LRR domains mediate recognition of pathogen-derived elicitors. Here we describe a random in vitro mutation analysis illustrating how mutations in an R protein (Rx) LRR domain generate disease-resistance specificity. The original Rx protein confers resistance only agains...

متن کامل

Distinct domains in the ARC region of the potato resistance protein Rx mediate LRR binding and inhibition of activation.

Plant nucleotide binding and leucine-rich repeat (NB-LRR) proteins contain a region of homology known as the ARC domain located between the NB and LRR domains. Structural modeling suggests that the ARC region can be subdivided into ARC1 and ARC2 domains. We have used the potato (Solanum tuberosum) Rx protein, which confers resistance to Potato virus X (PVX), to investigate the function of the A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Plant journal : for cell and molecular biology

دوره 32 2  شماره 

صفحات  -

تاریخ انتشار 2002