Stress Transfer Mechanisms at the Submicron Level for Graphene/Polymer Systems

نویسندگان

  • George Anagnostopoulos
  • Charalampos Androulidakis
  • Emmanuel N. Koukaras
  • Georgia Tsoukleri
  • Ioannis Polyzos
  • John Parthenios
  • Konstantinos Papagelis
  • Costas Galiotis
چکیده

The stress transfer mechanism from a polymer substrate to a nanoinclusion, such as a graphene flake, is of extreme interest for the production of effective nanocomposites. Previous work conducted mainly at the micron scale has shown that the intrinsic mechanism of stress transfer is shear at the interface. However, since the interfacial shear takes its maximum value at the very edge of the nanoinclusion it is of extreme interest to assess the effect of edge integrity upon axial stress transfer at the submicron scale. Here, we conduct a detailed Raman line mapping near the edges of a monolayer graphene flake that is simply supported onto an epoxy-based photoresist (SU8)/poly(methyl methacrylate) matrix at steps as small as 100 nm. We show for the first time that the distribution of axial strain (stress) along the flake deviates somewhat from the classical shear-lag prediction for a region of ∼ 2 μm from the edge. This behavior is mainly attributed to the presence of residual stresses, unintentional doping, and/or edge effects (deviation from the equilibrium values of bond lengths and angles, as well as different edge chiralities). By considering a simple balance of shear-to-normal stresses at the interface we are able to directly convert the strain (stress) gradient to values of interfacial shear stress for all the applied tensile levels without assuming classical shear-lag behavior. For large flakes a maximum value of interfacial shear stress of 0.4 MPa is obtained prior to flake slipping.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transdermal Delivery of Desmopressin Acetate from Water-in- Oil Nano/submicron Emulsion Systems

Desmopressin acetate is a potent synthetic peptide hormone. A more acceptable route of Desmopressin acetate is a potent synthetic peptide hormone. That is administered via parenteral, intranasal, and oral routes. A more acceptable route of administration with potentially good bioavailability could be offered by transdermal delivery. The present work reports on the development of water-in-oil (w...

متن کامل

Interfacial stress transfer in a graphene monolayer nanocomposite.

Graphene is one of the stiffest known materials, with a Young's modulus of 1 TPa, making it an ideal candidate for use as a reinforcement in high-performance composites. However, being a one-atom thick crystalline material, graphene poses several fundamental questions: (1) can decades of research on carbon-based composites be applied to such an ultimately-thin crystalline material? (2) is conti...

متن کامل

Cohesive-Shear-Lag Modeling of Interfacial Stress Transfer Between a Monolayer Graphene and a Polymer Substrate

Interfacial shear stress transfer of a monolayer graphene on top of a polymer substrate subjected to uniaxial tension was investigated by a cohesive zone model integrated with a shear-lag model. Strain distribution in the graphene flake was found to behave in three stages in general, bonded, damaged, and debonded, as a result of the interfacial stress transfer. By fitting the cohesive-shear-lag...

متن کامل

Ultra-thin Graphene/Polymer Layered Composite Membranes for NEMS applications

Single layer chemical vapor deposited (CVD) graphene has shown great promise in enabling Micro and Nanoelectromechanical Systems (MEMS/NEMS) that can outperform current silicon-based state of the art. However, current methods in forming single layer graphene MEMS devices result in low yields due to capillary effects acting on the suspended material during the graphene transfer process. In addit...

متن کامل

A Molecular Dynamics Study of Polymer/graphene Nanocomposites

In this work, we study three hybrid polymer/graphene interfacial systems (polystyrene/graphene, poly(methyl-methacrylate)/graphene and polyethylene/graphene) through detailed atomistic molecular dynamics (MD) simulations. Density profiles, structural characteristics and mobility aspects are being examined at the molecular level for all model systems. In addition, we compare the properties of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2015