Fe- and Ln-DOTAm-F12 Are Effective Paramagnetic Fluorine Contrast Agents for MRI in Water and Blood.

نویسندگان

  • Kriti Srivastava
  • Evan A Weitz
  • Katie L Peterson
  • Małgorzata Marjańska
  • Valérie C Pierre
چکیده

A series of fluorinated macrocyclic complexes, M-DOTAm-F12, where M is LaIII, EuIII, GdIII, TbIII, DyIII, HoIII, ErIII, TmIII, YbIII, and FeII, was synthesized, and their potential as fluorine magnetic resonance imaging (MRI) contrast agents was evaluated. The high water solubility of these complexes and the presence of a single fluorine NMR signal, two necessary parameters for in vivo MRI, are substantial advantages over currently used organic polyfluorocarbons and other reported paramagnetic 19F probes. Importantly, the sensitivity of the paramagnetic probes on a per fluorine basis is at least 1 order of magnitude higher than that of diamagnetic organic probes. This increased sensitivity is due to a substantial-up to 100-fold-decrease in the longitudinal relaxation time (T1) of the fluorine nuclei. The shorter T1 allows for a greater number of scans to be obtained in an equivalent time frame. The sensitivity of the fluorine probes is proportional to the T2/T1 ratio. In water, the optimal metal complexes for imaging applications are those containing HoIII and FeII, and to a lesser extent TmIII and YbIII. Whereas T1 of the lanthanide complexes are little affected by blood, the T2 are notably shorter in blood than in water. The sensitivity of Ln-DOTAm-F12 complexes is lower in blood than in water, such that the most sensitive complex in water, HoIII-DOTAm-F12, could not be detected in blood. TmIII yielded the most sensitive lanthanide fluorine probe in blood. Notably, the relaxation times of the fluorine nuclei of FeII-DOTAm-F12 are similar in water and in blood. That complex has the highest T2/T1 ratio (0.57) and the lowest limit of detection (300 μM) in blood. The combination of high water solubility, single fluorine signal, and high T2/T1 of M-DOTAm-F12 facilitates the acquisition of three-dimensional magnetic resonance images.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetite-loaded fluorine-containing polymeric micelles for magnetic resonance imaging and drug delivery.

Magnetite (Fe(3)O(4)) - loaded polymer micelles (denoted as "magnetomicelles") are produced by self-assembly of fluorine-containing amphiphilic poly(HFMA-g-PEGMA) copolymers with oleic acid modified Fe(3)O(4) nanoparticles in an aqueous medium. The oleic acid modified Fe(3)O(4) nanoparticles form small clusters in the poly(HFMA-g-PEGMA) micelles with a mean diameter of 100 nm and the magnetomic...

متن کامل

Systematic review: Superparamagnetic Iron Oxide nanoparticles as contrast agents in diagnosis of multiple sclerosis

Several MRI contrast agents (CAs) are used in medical diagnosis that gadolinium (Gd3+) is the most widely used as contrast agents. Unfortunately, its toxicity is due to its inefficiency. In this review, we discuss about the ability of SPIONs in MRI and application in Multiple Sclerosis diagnosis. Superparamagnetic iron oxide nanoparticles (SPIONs) such as magnetite nanoparticles are used as goo...

متن کامل

Systematic review: Superparamagnetic Iron Oxide nanoparticles as contrast agents in diagnosis of multiple sclerosis

Several MRI contrast agents (CAs) are used in medical diagnosis that gadolinium (Gd3+) is the most widely used as contrast agents. Unfortunately, its toxicity is due to its inefficiency. In this review, we discuss about the ability of SPIONs in MRI and application in Multiple Sclerosis diagnosis. Superparamagnetic iron oxide nanoparticles (SPIONs) such as magnetite nanoparticles are used as goo...

متن کامل

Potential positive MRI contrast agent based on PVP-grafted superparamagnetic iron oxide nanoparticles with various repetition times

Objective(s): The present study aimed to evaluate the capability of synthesized and modified superparamagnetic iron oxide nanoparticles (SPIONs) as the positive contrast agent in magnetic resonance imaging (MRI) by investigating the effect of repetition time (TR) on the MRI signal intensity. Materials and Methods: SPIONs were synthesized using the co-precipitation method, and their surfac...

متن کامل

Synthesis and evaluation of chitosan manganese-ferrite nanoparticles as MRI contrast agent

Magnetic nanoparticles are the good choice for using in MRI as the contrast agent. Iron oxide particles such as magnetite (Fe3O4) or its oxidized form maghemite (γ-Fe2O3) are the most commonly employed in biomedical applications. In this study, we synthesized and optimized the preparation of chitosan manganese-ferrite nanoparticles (CMn-Fe nps) and evaluated its ability for the mice macrophage ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inorganic chemistry

دوره 56 3  شماره 

صفحات  -

تاریخ انتشار 2017