Buckling in serpentine microstructures and applications in elastomer-supported ultra-stretchable electronics with high areal coverage.

نویسندگان

  • Yihui Zhang
  • Sheng Xu
  • Haoran Fu
  • Juhwan Lee
  • Jessica Su
  • Keh-Chih Hwang
  • John A Rogers
  • Yonggang Huang
چکیده

Lithographically defined electrical interconnects with thin, filamentary serpentine layouts have been widely explored for use in stretchable electronics supported by elastomeric substrates. We present a systematic and thorough study of buckling physics in such stretchable serpentine microstructures, and a strategic design of serpentine layout for ultra-stretchable electrode, via analytical models, finite element method (FEM) computations, and quantitative experiments. Both the onset of buckling and the postbuckling behaviors are examined, to determine scaling laws for the critical buckling strain and the limits of elastic behavior. Two buckling modes, namely the symmetric and anti-symmetric modes, are identified and analyzed, with experimental images and numerical results that show remarkable levels of agreement for the associated postbuckling processes. Based on these studies and an optimization in design layout, we demonstrate routes for application of serpentine interconnects in an ultra-stretchable electrode that offer, simultaneously, an areal coverage as high as 81%, and a biaxial stretchability as large as ~170%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultra-Stretchable Piezoelectric Nanogenerators via Large-Scale Aligned Fractal Inspired Micro/Nanofibers

Stretchable nanogenerators that directly generate electricity are promising for a wide range of applications in wearable electronics. However, the stretchability of the devices has been a long-standing challenge. Here we present a newly-designed ultra-stretchable nanogenerator based on fractal-inspired piezoelectric nanofibers and liquid metal electrodes that can withstand strain as large as 20...

متن کامل

Experimental and Theoretical Studies of Serpentine Interconnects on Ultrathin Elastomers for Stretchable Electronics

Integrating deformable interconnects with inorganic functional materials establishes a path to high-performance stretchable electronics. A number of applications demand that these systems sustain large deformations under repetitive loading. In this manuscript, the influence of the elastomeric substrate on the stretchability of serpentine interconnects is investigated theoretically and experimen...

متن کامل

Skin-inspired hydrogel–elastomer hybrids with robust interfaces and functional microstructures

Inspired by mammalian skins, soft hybrids integrating the merits of elastomers and hydrogels have potential applications in diverse areas including stretchable and bio-integrated electronics, microfluidics, tissue engineering, soft robotics and biomedical devices. However, existing hydrogel-elastomer hybrids have limitations such as weak interfacial bonding, low robustness and difficulties in p...

متن کامل

Buckling in serpentine microstructures and applications in elastomer - supported

Department of Civil and Environmental En Engineering, Northwestern University, Evan northwestern.edu Center for Mechanics and Materials, Tsingh Department of Materials Science and Engin Laboratory, University of Illinois at UrbanaE-mail: [email protected] Department of Civil Engineering, Zhejiang AML, Department of Engineering Mechani China Institute of Public Health and Medicine, Nor USA Sk...

متن کامل

Post-buckling analysis for the precisely controlled buckling of thin film encapsulated by elastomeric substrates

The precisely controlled buckling of stiff thin films (e.g., Si or GaAs nano ribbons) on the patterned surface of elastomeric substrate (e.g., poly(dimethylsiloxane) (PDMS)) with periodic inactivated and activated regions was designed by Sun et al. [Sun, Y., Choi, W.M., Jiang, H., Huang, Y.Y., Rogers, J.A., 2006. Controlled buckling of semiconductor nanoribbons for stretchable electronics. Natu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Soft matter

دوره 9 33  شماره 

صفحات  -

تاریخ انتشار 2013