Active Learning with Irrelevant Examples

نویسندگان

  • Dominic Mazzoni
  • Kiri Wagstaff
  • Michael C. Burl
چکیده

Active learning algorithms attempt to accelerate the learning process by requesting labels for the most informative items first. In real-world problems, however, there may exist unlabeled items that are irrelevant to the user’s classification goals. Queries about these points slow down learning because they provide no information about the problem of interest. We have observed that when irrelevant items are present, active learning can perform worse than random selection, requiring more time (queries) to achieve the same level of accuracy. Therefore, we propose a novel approach, Relevance Bias, in which the active learner combines its default selection heuristic with the output of a simultaneously trained relevance classifier to favor items that are likely to be both informative and relevant. In our experiments on a real-world problem and two benchmark datasets, the Relevance Bias approach significantly improves the learning rate of three different active learning approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Active Learning with Committees for Text Categorization

In many real-world domains, supervised learning requires a large number of training examples. In this paper, we describe an active learning method that uses a committee of learners to reduce the number of training examples required for learning. Our approach is similar to the Query by Committee framework, where disagreement among the committee members on the predicted label for the input part o...

متن کامل

A semi-supervised active learning algorithm for information extraction from textual data

In this article we present a semi-supervised active learning algorithm for pattern discovery in information extraction from textual data. The patterns are reduced regular expressions composed of various characteristics of features useful in information extraction. Our major contribution is a semi-supervised learning algorithm that extracts information from a set of examples labeled as relevant ...

متن کامل

Selecting Examples for Partial Memory

This paper describes a method for selecting training examples for a partial memory learning system. The method selects extreme examples that lie at the boundaries of concept descriptions and uses these examples with new training examples to induce new concept descriptions. Forgetting mechanisms also may be active to remove examples from partial memory that are irrelevant or outdated for the lea...

متن کامل

On the Necessity of Irrelevant Variables

This work explores the effects of relevant and irrelevant boolean variables on the accuracy of classifiers. The analysis uses the assumption that the variables are conditionally independent given the class, and focuses on a natural family of learning algorithms for such sources when the relevant variables have a small advantage over random guessing. The main result is that algorithms relying pr...

متن کامل

Selection of Relevant Features and Examples in Machine Learning Selecting Relevant Features and Examples

In this survey, we review work in machine learning on methods for handling data sets containing large amounts of irrelevant information. We focus on two key issues: the problem of selecting relevant features, and the problem of selecting relevant examples. We describe the advances that have been made on these topics in both empirical and theoretical work in machine learning, and we present a ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006