Robust Thin Layer Coal Thickness Estimation Using Ground Penetrating Radar

نویسنده

  • Andrew Darren Strange
چکیده

One of the most significant goals in coal mining technology research is the automation of underground coal mining machinery. A current challenge with automating underground coal mining machinery is measuring and maintaining a coal mining horizon. The coal mining horizon is the horizontal path the machinery follows through the undulating coal seam during the mining operation. A typical mining practice is to leave a thin remnant of coal unmined in order to maintain geological stability of the cutting face. If the remnant layer is too thick, resources are wasted as the unmined coal is permanently unrecoverable. If the remnant layer is too thin, the product is diluted by mining into the overburden and there is an increased risk of premature roof fall which increases danger. The main challenge therefore is to develop a robust sensing method to estimate the thickness of thin remant coal layers. This dissertation addresses this challenge by presenting a pattern recognition methodology to estimate thin remnant coal layer thickness using ground penetrating radar (GPR). The approach is based upon a novel feature vector, derived from the bispectrum, that is used to characterise the early-time segment of 1D GPR data. The early-time segment is dominated by clutter inherent in GPR systems such as antenna crosstalk, ringdown and ground-bounce. It is common practice to either time-gate the signal, disregard the clutter by rendering the early-time segment unusable, or configure the GPR equipment to minimise the clutter effects which in turn reduces probing range. Disregarding the early-time signal essentially imposes a lower thickness limit on traditional GPR layer thickness estimators. iii The challenges of estimating thin layer thickness is primarily due to these inherent clutter components. Traditional processing strategies attempt to minimise the clutter using pre-processing techniques such as the subtraction of a calibration signal. The proposed method, however, treats the clutter as a deterministic but unknown signal with additive noise. Hence the proposed approach utilises the energy from the clutter and monitors change in media from subtle changes in the signal shape. Two complementary processing methods important to horizon sensing have been also proposed. These methods, near-surface interface detection and antenna height estimation, may be used as pre-validation tools to increase the robustness of the thickness estimation technique. The proposed methods have been tested with synthetic data and validated with real data obtained using a low power 1.4GHz GPR system and a testbed with known conditions. With the given test system, it is shown that the proposed thin layer thickness estimator and near-surface interface detector outperform the traditional matched filter based processing methods for layers less than 5 cm in thickness. It is also shown that the proposed antenna height estimator outperforms the traditional height estimator for heights less than 7 cm. These new methods provide a means for reliably extending layer thickness estimation to the thin layer case where traditional approaches are known to fail.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid Detection Methods for Asphalt Pavement Thicknesses and Defects by a Vehicle-Mounted Ground Penetrating Radar (GPR) System

The thickness estimation of the top surface layer and surface layer, as well as the detection of road defects, are of great importance to the quality conditions of asphalt pavement. Although ground penetrating radar (GPR) methods have been widely used in non-destructive detection of pavements, the thickness estimation of the thin top surface layer is still a difficult problem due to the limitat...

متن کامل

Reflection Waveform Inversion of Ground-Penetrating Radar Data for Characterizing Thin and Ultrathin Layers of Nonaqueous Phase Liquid Contaminants in Stratified Media

Accurately quantifying thin-layer parameters by applying a targeted reflection waveform inversion methodology to ground-penetrating radar (GPR) reflection data may provide a useful tool for near-surface investigation and especially for contaminated site investigation where nonaqueous phase liquid (NAPL) contaminants are present. We implemented a targeted reflection waveform inversion algorithm ...

متن کامل

in situ measurement of pavement thickness and dielectric permittivity by GPR using an antenna array

We present a ground penetrating radar (GPR) system, which uses an antenna array for in situ measurements of the thickness and dielectric permittivity of an asphalt pavement layer. We calibrated the antenna array by considering the antenna phase center and the antenna offset. The results of the laboratory measurements demonstrate that the proposed calibration method can greatly improve the accur...

متن کامل

Application of ground penetrating radar for coal depth measurement

This paper describes the development of a new ground penetrating radar system for measuring coal thickness in underground mining operations. Although subsurface radar exhibits significant potential for depth measurement, the raw signals are complicated and cannot be readily interpreted by mining personnel. We show how real-time digital signal processing plays a key role in transforming the raw ...

متن کامل

Radar sensing of thin surface layers and near-surface buried objects

A robust ground penetrating radar (GPR) signal processing approach is developed and applied to the sensing of surface soil and ice/water layers as well as near-surface buried objects. The principal technique relies on a reference set of waveforms which are tested for optimal matching with measured radar reflections to be analyzed. In principle the reference set can be based on measurements as w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009