Sparse covariance estimation in heterogeneous samples.

نویسندگان

  • Abel Rodríguez
  • Alex Lenkoski
  • Adrian Dobra
چکیده

Standard Gaussian graphical models implicitly assume that the conditional independence among variables is common to all observations in the sample. However, in practice, observations are usually collected from heterogeneous populations where such an assumption is not satisfied, leading in turn to nonlinear relationships among variables. To address such situations we explore mixtures of Gaussian graphical models; in particular, we consider both infinite mixtures and infinite hidden Markov models where the emission distributions correspond to Gaussian graphical models. Such models allow us to divide a heterogeneous population into homogenous groups, with each cluster having its own conditional independence structure. As an illustration, we study the trends in foreign exchange rate fluctuations in the pre-Euro era.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SPICE and LIKES: Two hyperparameter-free methods for sparse-parameter estimation

SPICE (SParse Iterative Covariance-based Estimation) is a recently introduced method for sparse-parameter estimation in linear models using a robust covariance fitting criterion that does not depend on any hyperparameters. In this paper we revisit the derivation of SPICE to streamline it and to provide further insights into this method. LIKES (LIKelihood-based Estimation of Sparse parameters) i...

متن کامل

Robust Sparse Estimation Tasks in High Dimensions

In this paper we initiate the study of whether or not sparse estimation tasks can be performed efficiently in high dimensions, in the robust setting where an ε-fraction of samples are corrupted adversarially. We study the natural robust version of two classical sparse estimation problems, namely, sparse mean estimation and sparse PCA in the spiked covariance model. For both of these problems, w...

متن کامل

Covariance Estimation: The GLM and Regularization Perspectives

Finding an unconstrained and statistically interpretable reparameterization of a covariance matrix is still an open problem in statistics. Its solution is of central importance in covariance estimation, particularly in the recent high-dimensional data environment where enforcing the positive-definiteness constraint could be computationally expensive. We provide a survey of the progress made in ...

متن کامل

The masked sample covariance estimator : an analysis using matrix concentration inequalities

Covariance estimation becomes challenging in the regime where the number p of variables outstrips the number n of samples available to construct the estimate. One way to circumvent this problem is to assume that the covariance matrix is nearly sparse and to focus on estimating only the significant entries. To analyse this approach, Levina & Vershynin (2011, Probab. Theory Related Fields) introd...

متن کامل

Estimation of the sample covariance matrix from compressive measurements

This paper focuses on the estimation of the sample covariance matrix from low-dimensional random projections of data known as compressive measurements. In particular, we present an unbiased estimator to extract the covariance structure from compressive measurements obtained by a general class of random projection matrices consisting of i.i.d. zero-mean entries and finite first four moments. In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic journal of statistics

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2011