On Periodic Linear Neutral Delay Differential and Difference Equations

نویسندگان

  • CHRISTOS G. PHILOS
  • IOANNIS K. PURNARAS
چکیده

This article concerns the behavior of the solutions to periodic linear neutral delay differential equations as well as to periodic linear neutral delay difference equations. Some new results are obtained via two appropriate distinct roots of the corresponding (so called) characteristic equation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type

This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...

متن کامل

On Linear Volterra Difference Equations with Infinite Delay

Motivated by the old but significant papers by Driver [3] and Driver et al. [5], a number of relevant papers has recently appeared in the literature. See Frasson and Verduyn Lunel [10], Graef and Qian [11], Kordonis et al. [16], Kordonis and Philos [19], Kordonis et al. [21], Philos [26], and Philos and Purnaras [28, 30, 35, 33, 36]. The results in [10, 11, 16, 26, 28, 30, 35, 36] concern the l...

متن کامل

ON THE EXISTENCE OF PERIODIC SOLUTIONS FOR CERTAIN NON-LINEAR DIFFERENTIAL EQUATIONS

Here we consider some non-autonomous ordinary differential equations of order n and present some results and theorems on the existence of periodic solutions for them, which are sufficient conditions, section 1. Also we include generalizations of these results to vector differential equations and examinations of some practical examples by numerical simulation, section 2. For some special cases t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006