Object Detection at the Optimal Scale with Hidden State Shape Models
نویسندگان
چکیده
Hidden State Shape Models (HSSMs) [2], a variant of Hidden Markov Models (HMMs) [9], were proposed to detect shape classes of variable structure in cluttered images. In this paper, we formulate a probabilistic framework for HSSMs which provides two major improvements in comparison to the previous method [2]. First, while the method in [2] required the scale of the object to be passed as an input, the method proposed here estimates the scale of the object automatically. This is achieved by introducing a new term for the observation probability that is based on a object-clutter feature model. Second, a segmental HMM [6, 8] is applied to model the “duration probability” of each HMM state, which is learned from the shape statistics in a training set and helps obtain meaningful registration results. Using a segmental HMM provides a principled way to model dependencies between the scales of different parts of the object. In object localization experiments on a dataset of real hand images, the proposed method significantly outperforms the method of [2], reducing the incorrect localization rate from 40% to 15%. The improvement in accuracy becomes more significant if we consider that the method proposed here is scale-independent, whereas the method of [2] takes as input the scale of the object we want to localize.
منابع مشابه
Change Detection in Stochastic Shape Dynamical Models with Applications in Activity Modeling and Abnormality Detection
Title of Dissertation: Change Detection in Stochastic Shape Dynamical Models with Applications in Activity Modeling and Abnormality Detection Namrata Vaswani, Doctor of Philosophy, 2004 Dissertation directed by: Professor Rama Chellappa Department of Electrical and Computer Engineering The goal of this research is to model an “activity” performed by a group of moving and interacting objects (wh...
متن کاملThe Object Detection Efficiency in Synthetic Aperture Radar Systems
The main purpose of this paper is to develop the method of characteristic functions for calculating the detection characteristics in the case of the object surrounded by rough surfaces. This method is to be implemented in synthetic aperture radar (SAR) systems using optimal resolution algorithms. By applying the specified technique, the expressions have been obtained for the false alarm and cor...
متن کاملOnline multiple people tracking-by-detection in crowded scenes
Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking phase we have used a combination of support vector machine (SVM) person-specific classifie...
متن کاملPedestrian Detection and Tracking Using a Mixture of View-Based Shape-Texture Models
This paper presents a robust multi-cue approach to the integrated detection and tracking of pedestrians in cluttered urban environment. A novel spatio-temporal object representation is proposed that combines a generative shape model and a discriminative texture classifier, both composed of a mixture of pose-specific submodels. Shape is represented by a set of linear subspace models, an extensio...
متن کاملApplication of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors
In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...
متن کامل