0 30 90 64 v 2 2 3 Fe b 20 04 On the partition function of the six - vertex model with domain wall boundary conditions

نویسنده

  • F. Colomo
چکیده

The six-vertex model on an N × N square lattice with domain wall boundary conditions is considered. A Fredholm determinant representation for the partition function of the model is given. The kernel of the corresponding integral operator is of the so-called integrable type, and involves classical orthogonal polynomials. From this representation, a " reconstruction " formula is proposed, which expresses the partition function as the trace of a suitably chosen quantum operator, in the spirit of corner transfer matrix and vertex operator approaches to integrable spin models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determinant formula for the six - vertex model with reflecting end Osamu Tsuchiya

Using the Quantum Inverse Scattering Method for the XXZ model with open boundary conditions, we obtained the determinant formula for the six vertex model with reflecting end. E-mail address: [email protected] 1 1 Introducntion Determinant representations of correlation functions of one dimensional quantum integrable models were studied extensively[1]. Especially Essler et. al. studie...

متن کامل

On the Trigonometric Felderhof Model with Domain Wall Boundary Conditions

We consider the trigonometric Felderhof model, of free fermions in an external field, on a finite lattice with domain wall boundary conditions. The vertex weights are functions of rapidities and external fields. We obtain a determinant expression for the partition function in the special case where the dependence on the rapidities is eliminated, but for general external field variables. This de...

متن کامل

Exact Solution of the Six-vertex Model with Domain Wall Boundary Conditions. Ferroelectric Phase

This is a continuation of the paper [4] of Bleher and Fokin, in which the large n asymptotics is obtained for the partition function Zn of the six-vertex model with domain wall boundary conditions in the disordered phase. In the present paper we obtain the large n asymptotics of Zn in the ferroelectric phase. We prove that for any ε > 0, as n → ∞, Zn = CG nFn 2 [1+O(e−n 1−ε )], and we find the ...

متن کامل

Exact Solution of the Six-Vertex Model with Domain Wall Boundary Conditions: Antiferroelectric Phase

We obtain the large-n asymptotics of the partition function Zn of the six-vertex model with domain wall boundary conditions in the antiferroelectric phase region, with the weights a D sinh. t/, b D sinh. C t/, c D sinh.2 /, jt j < . We prove the conjecture of Zinn-Justin, that as n ! 1, Zn D C#4.n!/F n Œ1 C O.n 1/ , where ! and F are given by explicit expressions in and t , and #4. ́/ is the Jac...

متن کامل

Se p 20 03 On the partition function of the six - vertex model with domain wall boundary conditions

The six-vertex model on an N × N square lattice with domain wall boundary conditions is considered. A Fredholm determinant representation for the partition function of the model is given. The kernel of the corresponding integral operator is of the so-called integrable type, and involves classical orthogonal polynomials. From this representation, a " reconstruction " formula is proposed, which e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004