Microvascular blood viscosity in vivo and the endothelial surface layer.

نویسندگان

  • A R Pries
  • T W Secomb
چکیده

The apparent viscosity of blood in glass tubes declines with decreasing diameter (Fåhraeus-Lindqvist effect) and exhibits a distinctive minimum at 6-7 microm. However, flow resistance in vivo in small vessels is substantially higher than predicted by in vitro viscosity data. The presence of a thick endothelial surface layer (ESL) has been proposed as the primary cause for this discrepancy. Here, a physical model is proposed for microvascular flow resistance as a function of vessel diameter and hematocrit in vivo; it combines in vitro blood viscosity with effects of a diameter-dependent ESL. The model was developed on the basis of flow distributions observed in three microvascular networks in the rat mesentery with 392, 546, and 383 vessel segments, for which vessel diameters, network architecture, flow velocity, and hematocrit were determined by intravital microscopy. A previously described hemodynamic simulation was used to predict the distributions of flow and hematocrit from the assumed model for effective blood viscosity. The dependence of ESL thickness on vessel diameter was estimated by minimizing deviations of predicted values for velocities, flow directions, and hematocrits from measured data. Optimal results were obtained with a layer thickness of approximately 0.8-1 microm for 10- to 40-microm-diameter vessels and declined strongly for smaller diameters, with an additional hematocrit-dependent impact on flow resistance exhibiting a maximum for approximately 10-microm-diameter vessels. These results show that flow resistance in vivo can be explained by in vitro blood viscosity and the presence of an ESL and indicate the rheologically effective thickness of the ESL in microvessels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The endothelial glycocalyx promotes homogenous blood flow distribution within the microvasculature.

Many common diseases involve impaired tissue perfusion, and heterogeneous distribution of blood flow in the microvasculature contributes to this pathology. The physiological mechanisms regulating homogeneity/heterogeneity of microvascular perfusion are presently unknown. Using established empirical formulations for blood viscosity modeling in vivo (blood vessels) and in vitro (glass tubes), we ...

متن کامل

Microviscometry reveals reduced blood viscosity and altered shear rate and shear stress profiles in microvessels after hemodilution.

We show that many salient hemodynamic flow properties, which have been difficult or impossible to assess in microvessels in vivo, can be estimated by using microviscometry and fluorescent microparticle image velocimetry in microvessels >20 microm in diameter. Radial distributions in blood viscosity, shear stress, and shear rate are obtained and used to predict axial pressure gradient, apparent ...

متن کامل

Microvasculature on a chip: study of the Endothelial Surface Layer and the flow structure of Red Blood Cells

Microvasculatures-on-a-chip, i.e. in vitro models that mimic important features of microvessel networks, have gained increasing interest in recent years. Such devices have allowed investigating pathophysiological situations involving abnormal biophysical interactions between blood cells and vessel walls. Still, a central question remains regarding the presence, in such biomimetic systems, of th...

متن کامل

Microvascular blood flow resistance: role of endothelial surface layer.

Observations of blood flow in microvascular networks have shown that the resistance to blood flow is about twice that expected from studies using narrow glass tubes. The goal of the present study was to test the hypothesis that a macromolecular layer (glycocalyx) lining the endothelial surface contributes to blood flow resistance. Changes in flow resistance in microvascular networks of the rat ...

متن کامل

اثر سرب برنفوذپذیری آندوتلیال آئورت

 The side effects of toxic trace elements such as lead in the exposed subjects have been investigated in past years. Lead disturbs microvascular system, and changes the plasma level of lipids and lipoproteins. In this research the role of lead in plasma lipids and endothelial permeability of aorta were studied.   Two groups of white male rabbits were under investigation for forty days. Group I ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 289 6  شماره 

صفحات  -

تاریخ انتشار 2005