Some Generalized Kac-Moody Algebras With Known Root Multiplicities

نویسنده

  • Peter Niemann
چکیده

Starting from Borcherds’ fake monster Lie algebra we construct a sequence of six generalized Kac-Moody algebras whose denominator formulas, root systems and all root multiplicities can be described explicitly. The root systems decompose space into convex holes, of finite and affine type, similar to the situation in the case of the Leech lattice. As a corollary, we obtain strong upper bounds for the root multiplicities of a number of hyperbolic Lie algebras, including AE3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Root Multiplicities of Some Hyperbolic Kac-Moody Algebras

Using the coset construction, we compute the root multiplicities at level three for some hyperbolic Kac-Moody algebras including the basic hyperbolic extension of A (1) 1 and E10. Member of the CNRS Laboratoire de la Direction des Sciences de la Matière du Commisariat à l’Energie Atomique.

متن کامل

Root multiplicities of hyperbolic Kac–Moody algebras and Fourier coefficients of modular forms

In this paper we consider the hyperbolic Kac–Moody algebra F associated with the generalized Cartan matrix ( 2 −2 0 −2 2 −1 0 −1 2 ) . Its connection to Siegel modular forms of genus 2 was first studied by A. Feingold and I. Frenkel. The denominator function of F is not an automorphic form. However, Gritsenko and Nikulin extended F to a generalized Kac–Moody algebra whose denominator function i...

متن کامل

A combinatorial approach to root multiplicities of rank 2 hyperbolic Kac–Moody algebras

In this paper we study root multiplicities of rank 2 hyperbolic Kac–Moody algebras using the combinatorics of Dyck paths. ARTICLE HISTORY Received 30 November 2016 Revised 19 December 2016 Communicated by K. Misra

متن کامل

A Theory of Lorentzian Kac–moody Algebras

We present a variant of the Theory of Lorentzian (i. e. with a hyperbolic generalized Cartan matrix) Kac–Moody algebras recently developed by V. A. Gritsenko and the author. It is closely related with and strongly uses results of R. Borcherds. This theory should generalize well-known Theories of finite Kac–Moody algebras (i. e. classical semi-simple Lie algebras corresponding to positive genera...

متن کامل

A characterization of generalized Kac - Moody algebras

Generalized Kac-Moody algebras can be described in two ways: either using generators and relations, or as Lie algebras with an almost positive definite symmetric contravariant bilinear form. Unfortunately it is usually hard to check either of these conditions for any naturally occurring Lie algebra. In this paper we give a third characterization of generalized Kac-Moody algebras which is easier...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000