Behaviour as input for modelling dispersal of fish larvae: behaviour, biogeography, hydrodynamics, ontogeny, physiology and phylogeny meet hydrography
نویسنده
چکیده
Both morphology and behaviour develop during the pelagic larval stage of demersal teleost fishes. Demersal perciform fishes from warm-water habitats begin their pelagic larval stage as plankton but end it as nekton, with behavioural capabilities (including swimming, orientation and sensory abilities) that can influence, if not control, dispersal trajectories. The ontogeny of these behaviours, and the gradual transition from plankton to nekton, are central to understanding how larval fishes can influence dispersal and how behaviour can be integrated into dispersal models. Recent behavioural research shows that, from about 5 to 8 mm standard length, larvae of warm-water perciform fishes can directly influence dispersal, because they swim in an efficient inertial hydrodynamic environment, can swim for kilometres at speeds that heuristic models show will alter dispersal trajectories, can swim faster than ambient currents before settlement, can orientate in the pelagic environment and can detect sensory cues (light, sound, odour) that allow orientation. Fish larvae also control their vertical position (which may change temporally, spatially and ontogenetically), allowing indirect influence on dispersal. Most research on larval behaviour relevant to dispersal (i.e. swimming, orientation and sensory abilities) has been done with warm-water perciform species. This invites the question: Will the same be found in cool water or in species of other orders? The hydrodynamic and physiological effects of temperature indicate that larvae in warm water should swim more efficiently and initially at smaller sizes than larvae in cool water. Limited evidence suggests that larvae of perciform fishes are more behaviourally competent and attain morphological and behavioural milestones when smaller (and probably younger) than do larvae of clupeiform, gadiform and pleuronectiform (CGP) fishes. Perciform fishes dominate demersal fish communities in warm water, whereas CGP fishes dominate in cooler waters. These hydrodynamic, physiological, ontogenetic, phylogenetic and biogeographic factors imply that larval fish behaviour may have more influence on dispersal in warm seas than in cool seas. This hypothesis requires testing. Additional factors that should be taken into account when using behaviour of larvae to produce biophysical models of dispersal are discussed.
منابع مشابه
Dispersal Patterns, Active Behaviour, and Flow Environment during Early Life History of Coastal Cold Water Fishes
During the pelagic larval phase, fish dispersal may be influenced passively by surface currents or actively determined by swimming behaviour. In situ observations of larval swimming are few given the constraints of field sampling. Active behaviour is therefore often inferred from spatial patterns in the field, laboratory studies, or hydrodynamic theory, but rarely are these approaches considere...
متن کاملModelling of Stress-Strain Behaviour of Clayey Soils Using Artificial Neural Network
In this research, behaviour of clayey soils under triaxial loading is studied using Neural Network. The models have been prepared to predict the stress-strain behaviour of remolded clays under undrained condition. The advantage of the model developed is that simple parameters such as physical characteristics of soils like water content, fine content, Atterberg limits and so on, are used to mode...
متن کاملModelling of Stress-Strain Behaviour of Clayey Soils Using Artificial Neural Network
In this research, behaviour of clayey soils under triaxial loading is studied using Neural Network. The models have been prepared to predict the stress-strain behaviour of remolded clays under undrained condition. The advantage of the model developed is that simple parameters such as physical characteristics of soils like water content, fine content, Atterberg limits and so on, are used to mode...
متن کاملSwimming speeds of larval coral reef fishes: impacts on self-recruitment and dispersal
The dispersal of larvae during their time in the pelagic environment is critically important to our understanding of marine populations. Recent publications have highlighted the potential importance of larval behaviour in influencing dispersal patterns of larval reef fishes. However, it has not been clearly established if their abilities are of a magnitude comparable to the potential effects of...
متن کاملAncient trans-Atlantic flight explains locust biogeography: molecular phylogenetics of Schistocerca.
The desert locust (Schistocerca gregaria) has been an important agricultural pest at least since biblical times. Although the ecology, physiology and behaviour of this insect species have been well characterized, its biogeographical origins and evolutionary history are more obscure. Schistocerca gregaria occurs throughout Africa, the Middle East and Western Asia, but all other species in the ge...
متن کامل