HoxB4 Confers Definitive Lymphoid-Myeloid Engraftment Potential on Embryonic Stem Cell and Yolk Sac Hematopoietic Progenitors

نویسندگان

  • Michael Kyba
  • Rita C.R. Perlingeiro
  • George Q. Daley
چکیده

The extent to which primitive embryonic blood progenitors contribute to definitive lymphoid-myeloid hematopoiesis in the adult remains uncertain. In an effort to characterize factors that distinguish the definitive adult hematopoietic stem cell (HSC) and primitive progenitors derived from yolk sac or embryonic stem (ES) cells, we examined the effect of ectopic expression of HoxB4, a homeotic selector gene implicated in self-renewal of definitive HSCs. Expression of HoxB4 in primitive progenitors combined with culture on hematopoietic stroma induces a switch to the definitive HSC phenotype. These progenitors engraft lethally irradiated adults and contribute to long-term, multilineage hematopoiesis in primary and secondary recipients. Our results suggest that primitive HSCs are poised to become definitive HSCs and that this transition can be promoted by HoxB4 expression. This strategy for blood engraftment enables modeling of hematopoietic transplantation from ES cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinct Sources of Hematopoietic Progenitors Emerge before HSCs and Provide Functional Blood Cells in the Mammalian Embryo.

Hematopoietic potential arises in mammalian embryos before adult-repopulating hematopoietic stem cells (HSCs). At embryonic day 9.5 (E9.5), we show the first murine definitive erythro-myeloid progenitors (EMPs) have an immunophenotype distinct from primitive hematopoietic progenitors, maturing megakaryocytes and macrophages, and rare B cell potential. EMPs emerge in the yolk sac with erythroid ...

متن کامل

Temporal specification of blood progenitors from mouse embryonic stem cells and induced pluripotent stem cells.

The efficient and reproducible generation of differentiated progenitors from pluripotent stem cells requires the recapitulation of appropriate developmental stages and pathways. Here, we have used the combination of activin A, BMP4 and VEGF under serum-free conditions to induce hematopoietic differentiation from both embryonic and induced pluripotent stem cells, with the aim of modeling the pri...

متن کامل

The human embryo, but not its yolk sac, generates lympho-myeloid stem cells: mapping multipotent hematopoietic cell fate in intraembryonic mesoderm.

We have traced emerging hematopoietic cells along human early ontogeny by culturing embryonic tissue rudiments in the presence of stromal cells that promote myeloid and B cell differentiation, and by assaying T cell potential in the NOD-SCID mouse thymus. Hematogenous potential was present inside the embryo as early as day 19 of development in the absence of detectable CD34+ hematopoietic cells...

متن کامل

In vivo repopulating hematopoietic stem cells are present in the murine yolk sac at day 9.0 postcoitus.

The murine yolk sac, being the first site of embryonic blood cell production, has long been theorized to contain the migrating hematopoietic stem cells (HSC) that seed the liver and initiate hematopoiesis on day 10.0 postcoitus (pc). However, it remains controversial whether yolk sac cells isolated before day 11.0 pc possess any long-term repopulating HSC activity upon transplantation into adul...

متن کامل

Yolk-sac hematopoiesis: the first blood cells of mouse and man.

OBJECTIVE To review the process of blood-cell formation in the murine and human yolk sac. DATA SOURCES Most articles were selected from the PubMed database. DATA SYNTHESIS The yolk sac is the first site of blood-cell production during murine and human ontogeny. Primitive erythroid cells originate in the yolk sac and complete their maturation, including enucleation, in the bloodstream. Thoug...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 109  شماره 

صفحات  -

تاریخ انتشار 2002