Modules, comodules and cotensor products over Frobenius algebras

نویسنده

  • Lowell Abrams
چکیده

We characterize noncommutative Frobenius algebras A in terms of the existence of a coproduct which is a map of left A-modules. We show that the category of right (left) comodules over A, relative to this coproduct, is isomorphic to the category of right (left) modules. This isomorphism enables a reformulation of the cotensor product of Eilenberg and Moore as a functor of modules rather than comodules. We prove that the cotensor product M2N of a right A-module M and a left A-module N is isomorphic to the vector space of homomorphisms from a particular left A-module D to N ⊗M , viewed as a left A-module. Some properties of D are described. Finally, we show that when A is a symmetric algebra, the cotensor product M2N and its derived functors are given by the Hochschild cohomology over A of N ⊗M .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cotensor Products of Modules

Let C be a coalgebra over a field k and A its dual algebra. The category of C-comodules is equivalent to a category of A-modules. We use this to interpret the cotensor product M N of two comodules in terms of the appropriate Hochschild cohomology of the A-bimodule M ⊗N , when A is finite-dimensional, profinite, graded or differential-graded. The main applications are to Galois cohomology, comod...

متن کامل

Morita Equivalences Induced by Bimodules over Hopf-galois Extensions

Let H be a Hopf algebra, and A, B be H-Galois extensions. We investigate the category AM H B of relative Hopf bimodules, and the Morita equivalences between A and B induced by them. Introduction This paper is a contribution to the representation theory of Hopf-Galois extensions, as originated by Schneider in [15]. More specifically, we consider the following questions. Let H be a Hopf algebra, ...

متن کامل

Module and Comodule Categories - a Survey

The theory of modules over associative algebras and the theory of comodules for coassociative coalgebras were developed fairly independently during the last decades. In this survey we display an intimate connection between these areas by the notion of categories subgenerated by an object. After a review of the relevant techniques in categories of left modules, applications to the bimodule struc...

متن کامل

Frobenius Functors of the Second Kind

A pair of adjoint functors (F,G) is called a Frobenius pair of the second type if G is a left adjoint of βFα for some category equivalences α and β. Frobenius ring extensions of the second kind provide examples of Frobenius pairs of the second kind. We study Frobenius pairs of the second kind between categories of modules, comodules, and comodules over a coring. We recover the result that a fin...

متن کامل

biserial coalgebras and representations of quantum SL ( 2 )

We develop the theory of special biserial and string coalgebras and other concepts from the representation theory of quivers. These theoretical tools are then used to describe the finite dimensional comodules and Auslander-Reiten quiver for the coordinate Hopf algebra of quantum SL(2) at a root of unity. We also describe the stable Green ring. Let C = k ζ [SL(2)] denote the quantized coordinate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998