On the Decomposition of Order-Separable Posets of Countable Width into Chains

نویسندگان

  • Gary Gruenhage
  • Joe Mashburn
چکیده

A partially ordered set X has countable width if and only if every collection of pairwise incomparable elements of X is countable. It is order-separable if and only if there is a countable subset D of X such that whenever p, q ∈ X and p < q, there is r ∈ D such that p ≤ r ≤ q. Can every order-separable poset of countable width be written as the union of a countable number of chains? We show that the answer to this question is ”no” if there is a 2-entangled subset of IR, and ”yes” under the Open Coloring Axiom.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Cofinality of Infinite Partially Ordered Sets: Factoring a Poset into Lean Essential Subsets

We study which infinite posets have simple cofinal subsets such as chains, or decompose canonically into such subsets. The posets of countable cofinality admitting such a decomposition are characterized by a forbidden substructure; the corresponding problem for uncountable cofinality remains open.

متن کامل

Logic and Bounded-Width Rational Languages of Posets over Countable Scattered Linear Orderings

In this paper we consider languages of labelled N -free posets over countable and scattered linear orderings. We prove that a language of such posets is series-rational if and only if it is recognizable by a finite depth-nilpotent algebra if and only if it is bounded-width and monadic second-order definable. This extends previous results on languages of labelled N -free finite and ω-posets and ...

متن کامل

Computing the Size of Intervals in the Weak Bruhat Order

The weak Bruhat order on Sn is the partial order ≺ so that σ ≺ τ whenever the set of inversions of σ is a subset of the set of inversions of τ . We investigate the time complexity of computing the size of intervals with respect to ≺. Using relationships between two-dimensional posets and the weak Bruhat order, we show that the size of the interval [σ1, σ2] can be computed in polynomial time whe...

متن کامل

Separable Models of Randomizations

Every complete first order theory has a corresponding complete theory in continuous logic, called the randomization theory. It has two sorts, a sort for random elements of models of the first order theory, and a sort for events. In this paper we establish connections between properties of countable models of a first order theory and corresponding properties of separable models of the randomizat...

متن کامل

An Improved Subexponential Bound for On-line Chain Partitioning

Bosek and Krawczyk exhibited an on-line algorithm for partitioning an on-line poset of width w into w lgw chains. They also observed that the problem of on-line chain partitioning of general posets of width w could be reduced to First-Fit chain partitioning of (2w + 1)-ladder-free posets of width w, where an m-ladder is the transitive closure of the union of two incomparable chains x1 6 . . . 6...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Order

دوره 16  شماره 

صفحات  -

تاریخ انتشار 1999