Fine-Pruning: Joint Fine-Tuning and Compression of a Convolutional Network with Bayesian Optimization
نویسندگان
چکیده
When approaching a novel visual recognition problem in a specialized image domain, a common strategy is to start with a pre-trained deep neural network and fine-tune it to the specialized domain. If the target domain covers a smaller visual space than the source domain used for pre-training (e.g. ImageNet), the fine-tuned network is likely to be overparameterized. However, applying network pruning as a post-processing step to reduce the memory requirements has drawbacks: fine-tuning and pruning are performed independently; pruning parameters are set once and cannot adapt over time; and the highly parameterized nature of state-of-the-art pruning methods make it prohibitive to manually search the pruning parameter space for deep networks, leading to coarse approximations. We propose a principled method for jointly fine-tuning and compressing a pre-trained convolutional network that overcomes these limitations. Experiments on two specialized image domains (remote sensing images and describable textures) demonstrate the validity of the proposed approach.
منابع مشابه
Pruning Convolutional Neural Networks for Image Instance Retrieval
In this work, we focus on the problem of image instance retrieval with deep descriptors extracted from pruned Convolutional Neural Networks (CNN). The objective is to heavily prune convolutional edges while maintaining retrieval performance. To this end, we introduce both data-independent and data-dependent heuristics to prune convolutional edges, and evaluate their performance across various c...
متن کاملExploring Linear Relationship in Feature Map Subspace for ConvNets Compression
While the research on convolutional neural networks (CNNs) is progressing quickly, the real-world deployment of these models is often limited by computing resources and memory constraints. In this paper, we address this issue by proposing a novel filter pruning method to compress and accelerate CNNs. Our work is based on the linear relationship identified in different feature map subspaces via ...
متن کاملStructural Compression of Convolutional Neural Networks Based on Greedy Filter Pruning
Convolutional neural networks (CNNs) have state-of-the-art performance on many problems in machine vision. However, networks with superior performance often have millions of weights so that it is difficult or impossible to use CNNs on computationally limited devices or to humanly interpret them. A myriad of CNN compression approaches have been proposed and they involve pruning and compressing t...
متن کاملPruning Convolutional Neural Networks for Resource Efficient Transfer Learning
We propose a new framework for pruning convolutional kernels in neural networks to enable efficient inference, focusing on transfer learning where large and potentially unwieldy pretrained networks are adapted to specialized tasks. We interleave greedy criteria-based pruning with fine-tuning by backpropagation—a computationally efficient procedure that maintains good generalization in the prune...
متن کاملEfficient Hardware Realization of Convolutional Neural Networks using Intra-Kernel Regular Pruning
The recent trend toward increasingly deep convolutional neural networks (CNNs) leads to a higher demand of computational power and memory storage. Consequently, the deployment of CNNs in hardware has become more challenging. In this paper, we propose an Intra-Kernel Regular (IKR) pruning scheme to reduce the size and computational complexity of the CNNs by removing redundant weights at a fine-g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1707.09102 شماره
صفحات -
تاریخ انتشار 2017