(57)Fe Mössbauer isomer shifts of heme protein model systems: electronic structure calculations.
نویسندگان
چکیده
We report the results of density functional theory (DFT) calculations of the (57)Fe Mössbauer isomer shifts (delta(Fe)) for a series of 24 inorganic, organometallic, and metalloprotein/metalloporphyrin model systems in S = 0, (1)/(2), 1, (3)/(2), 2, and (5)/(2) spin states. We find an excellent correlation between calculation and experiment over the entire 2.34 mm s(-1) range of isomer shifts: a 0.07-0.08 mm s(-1) rms deviation between calculation and experiment (corresponding to 3-4% of the total delta(Fe) range, depending on the functionals used) with R(2) values of 0.973 and 0.981 (p < 0.0001). The best results are obtained by using the hybrid exchange-correlation functional B3LYP, used previously for (57)Fe Mössbauer quadrupole splittings and (57)Fe NMR chemical shifts and chemical shielding anisotropies. The relativistically corrected value of alpha, alpha(rel), converges with the large basis set used in this work, but the exact values vary somewhat with the methods used: -0.253 a(0)(3) mm s(-1) (Hartree-Fock; HF); -0.316 a(0)(3) mm s(-1) (hybrid HF-DFT; B3LYP), or -0.367 a(0)(3) mm s(-1) (pure DFT; BPW91). Both normal and intermediate spin state isomer shifts are well reproduced by the calculations, as is the broad range of delta(Fe) values: from [Fe(VI)O(4)](2-) (-0.90 mm s(-1) expt; -1.01 mm s(-1) calc) to KFe(II)F(3) (1.44 mm s(-1) expt; 1.46 mm s(-1) calc). Molecular orbital analyses of all inorganic solids as well as all organometallic and metalloporphyrin systems studied reveal that there are three major core MO contributions to rho(tot)(0), the total charge density at the iron nucleus (and hence delta(Fe)), that do not vary with changes in chemistry, while the valence MO contributions are highly correlated with delta(Fe) (R(2) = 0.915-0.938, depending on the functionals used), and the correlation between the valence MO contributions and the total MO contribution is even better (R(2) = 0.965-0.976, depending on the functionals used). These results are of general interest since they demonstrate that DFT methods now enable the accurate prediction of delta(Fe) values in inorganic, organometallic, and metalloporphyrin systems in all spin states and over a very wide range of delta(Fe) values with a very small rms error.
منابع مشابه
Mössbauer characterization of an unusual high-spin side-on peroxo-Fe3+ species in the active site of superoxide reductase from Desulfoarculus Baarsii. Density functional calculations on related models.
Superoxide reductase (SOR) is an Fe protein that catalyzes the reduction of superoxide to give H(2)O(2). Recently, the mutation of the Glu47 residue into alanine (E47A) in the active site of SOR from Desulfoarculus baarsii has allowed the stabilization of an iron-peroxo species when quickly reacted with H(2)O(2) [Mathé et al. (2002) J. Am. Chem. Soc. 124, 4966-4967]. To further investigate this...
متن کاملTheoretical 57Fe Mössbauer spectroscopy: isomer shifts of [Fe]-hydrogenase intermediates.
Mössbauer spectroscopy is an indispensable spectroscopic technique and analytical tool in iron coordination chemistry. The linear correlation between the electron density at the nucleus ("contact density") and experimental isomer shifts has been used to link calculated contact densities to experimental isomer shifts. Here we have investigated relativistic methods of systematically increasing so...
متن کاملCalibration of 57Fe isomer shift from ab initio calculations: can theory and experiment reach an agreement?
Using linear response approach to the Mössbauer isomer shift, the calibration constant alpha((57)Fe) was obtained from high level ab initio calculations carried out for a representative set of iron compounds. The importance of the effects of relativity and electron correlation for an accurate description of the (57)Fe isomer shift is demonstrated on the basis of the Hartree-Fock, coupled cluste...
متن کاملInfrared , 57 Fe Mössbauer , and 31 P NMR Spectroscopic Characterization of Fe ( CO ) 4 L ( L = Phosphine and Phosphite )
Z. Naturforsch. 42b, 573-578 (1987); eingegangen am 8. Januar 1987 Phosphinetetracarbonyliron, Phosphitetetracarbonyliron, IR Spectra, P NMR Spectra, Fe Mössbauer Spectra A series of trigonal bipyramidal Fe(CO)4L complexes has been prepared and characterized by infrared, Fe Mössbauer and P NMR spectroscopy. A linear correlation, with a negative slope, between the CO stretching frequencies and t...
متن کاملOn Predicting Mössbauer Parameters of Iron-Containing Molecules with Density-Functional Theory
The performance of six frequently used density functional theory (DFT) methods (RPBE, OLYP, TPSS, B3LYP, B3LYP*, and TPSSh) in the prediction of Mössbauer isomer shifts(δ) and quadrupole splittings (ΔEQ) is studied for an extended and diverse set of Fe complexes. In addition to the influence of the applied density functional and the type of the basis set, the effect of the environment of the mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 124 26 شماره
صفحات -
تاریخ انتشار 2002