Postsynaptic Target Specificity of Neurotrophin-Induced Presynaptic Potentiation

نویسندگان

  • Alejandro F. Schinder
  • Benedikt Berninger
  • Mu-ming Poo
چکیده

The role of the target cell in neurotrophin-induced modifications of glutamatergic synaptic transmission was examined in cultured hippocampal neurons. Brain-derived neurotrophic factor (BDNF) induced rapid and persistent potentiation of evoked glutamate release when the postsynaptic neuron was glutamatergic, or excitatory (E-->E), but not when it was GABAergic, or inhibitory (E-->1). This target-specific action of BDNF was also found at divergent outputs of a single presynaptic neuron innervating both glutamatergic and GABAergic neurons, suggesting that individual terminals can be independently modified. Surprisingly, BDNF increased the frequency of miniature postsynaptic currents at both E-->E and E-->I, although it had no effect on evoked currents at E-->I. Finally, potentiation by neurotrophin-3 (NT-3) was also target specific. The selective effect at E-->E suggests that retrograde signaling by the postsynaptic target cell endows a localized presynaptic action of neurotrophins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Postsynaptic TRPC1 function contributes to BDNF-induced synaptic potentiation at the developing neuromuscular junction.

Brain-derived neurotrophic factor (BDNF) induces synaptic potentiation at both neuromuscular junctions (NMJs) and synapses of the CNS through a Ca2+ -dependent pathway. The molecular mechanism underlying BDNF-induced synaptic potentiation, especially the regulation of Ca2+ dynamics, is not well understood. Using the Xenopus NMJ in culture as a model system, we show that pharmacological inhibiti...

متن کامل

Localized synaptic actions of neurotrophin-4.

Neurotrophins secreted by the postsynaptic target cell may participate in activity-dependent synaptic modification during development and in the mature brain. A fundamental question of how neurotrophins can sculpt synaptic connections is whether neurotrophin-induced synaptic changes are spatially restricted to the site of neurotrophin secretion or whether they can spread to neighboring synapses...

متن کامل

Expression of a dominant negative TrkB receptor, T1, reveals a requirement for presynaptic signaling in BDNF-induced synaptic potentiation in cultured hippocampal neurons.

We have developed a method to analyze the relative contributions of pre- and postsynaptic actions of a particular gene product in neurons in culture and potentially in slices using adenovirus-mediated gene transfer. A recombinant virus directed the expression of both a GFP reporter protein and TrkB.T1, a C-terminal truncated dominant negative TrkB neurotrophin receptor. When expressed in the pr...

متن کامل

Potentiation of Developing Synapses by Postsynaptic Release of Neurotrophin-4

The hypothesis that synaptic functions can be regulated by neurotrophins secreted from the postsynaptic cell was examined in Xenopus nerve-muscle cultures. Neuromuscular synapses formed on myocytes overexpressing neurotrophin-4 (M+ synapses) exhibited a higher level of spontaneous synaptic activity and enhanced evoked synaptic transmission as compared to those formed on normal control myocytes ...

متن کامل

Pro-BDNF–induced synaptic depression and retraction at developing neuromuscular synapses

Postsynaptic cells generate positive and negative signals that retrogradely modulate presynaptic function. At developing neuromuscular synapses, prolonged stimulation of muscle cells induces sustained synaptic depression. We provide evidence that pro-brain-derived neurotrophic factor (BDNF) is a negative retrograde signal that can be converted into a positive signal by metalloproteases at the s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2000