Are V1 Simple Cells Optimized for Visual Occlusions? A Comparative Study
نویسندگان
چکیده
Simple cells in primary visual cortex were famously found to respond to low-level image components such as edges. Sparse coding and independent component analysis (ICA) emerged as the standard computational models for simple cell coding because they linked their receptive fields to the statistics of visual stimuli. However, a salient feature of image statistics, occlusions of image components, is not considered by these models. Here we ask if occlusions have an effect on the predicted shapes of simple cell receptive fields. We use a comparative approach to answer this question and investigate two models for simple cells: a standard linear model and an occlusive model. For both models we simultaneously estimate optimal receptive fields, sparsity and stimulus noise. The two models are identical except for their component superposition assumption. We find the image encoding and receptive fields predicted by the models to differ significantly. While both models predict many Gabor-like fields, the occlusive model predicts a much sparser encoding and high percentages of 'globular' receptive fields. This relatively new center-surround type of simple cell response is observed since reverse correlation is used in experimental studies. While high percentages of 'globular' fields can be obtained using specific choices of sparsity and overcompleteness in linear sparse coding, no or only low proportions are reported in the vast majority of studies on linear models (including all ICA models). Likewise, for the here investigated linear model and optimal sparsity, only low proportions of 'globular' fields are observed. In comparison, the occlusive model robustly infers high proportions and can match the experimentally observed high proportions of 'globular' fields well. Our computational study, therefore, suggests that 'globular' fields may be evidence for an optimal encoding of visual occlusions in primary visual cortex.
منابع مشابه
A Comparative Study of Cortical Computations in the Mammalian Visual Cortex
Orientation selectivity is a property of mammalian primary visual cortex (V1) neurons, yet its emergence along the visual pathway varies across species. In carnivores and primates, elongated receptive fields first appear in V1, while in lagomorphs such receptive fields emerge earlier, in the retina. Here we examine the mouse visual pathway and reveal the existence of orientation selectivity in ...
متن کاملOrganization of callosal linkages in visual area V2 of macaque monkey.
In visual area V2 of the macaque monkey callosal cells accumulate in finger-like bands that extend 7-8 mm from the V1/V2 border, or approximately half the width of area V2. The present study investigated whether or not callosal connections in area V2 link loci that are located at the same distance from the V1/V2 border in both hemispheres. We analyzed the patterns of retrograde labeling in V2 r...
متن کاملSelective effects of aging on simple and complex cells in primary visual cortex of rhesus monkeys.
The visual system is hierarchically organized between and within areas. Previous studies have found that aging affects different visual areas in a progressive manner, e.g. more degradation occurs in the primary visual cortex (V1) than in the dorsal lateral geniculate nucleus (dLGN), and more in the secondary visual (V2) and middle temporal (MT) visual areas than in V1. In view of these findings...
متن کاملArea map of mouse visual cortex.
It is controversial whether mouse extrastriate cortex has a "simple" organization in which lateral primary visual cortex (V1) is adjoined by a single area V2 or has a "complex" organization, in which lateral V1 is adjoined by multiple distinct areas, all of which share the vertical meridian with V1. Resolving this issue is important for understanding the evolution and development of cortical ar...
متن کاملAnatomical comparison of the macaque and marsupial visual cortex: common features that may reflect retention of essential cortical elements.
This study identifies fundamental anatomical features of primary visual cortex, area V1 of macaque monkey cerebral cortex, i.e., features that are present in area V1 of phylogenetically distant mammals of quite different lifestyle and features that are common to other regions of cortex. We compared anatomical constituents of macaque V1 with V1 of members of the two principal marsupial lines, th...
متن کامل