Tensor Embedding Methods
نویسندگان
چکیده
Over the past few years, some embedding methods have been proposed for feature extraction and dimensionality reduction in various machine learning and pattern classification tasks. Among the methods proposed are Neighborhood Preserving Embedding (NPE), Locality Preserving Projection (LPP) and Local Discriminant Embedding (LDE) which have been used in such applications as face recognition and image/video retrieval. However, although the data in these applications are more naturally represented as higher-order tensors, the embedding methods can only work with vectorized data representations which may not capture well some useful information in the original data. Moreover, highdimensional vectorized representations also suffer from the curse of dimensionality and the high computational demand. In this paper, we propose some novel tensor embedding methods which, unlike previous methods, take data directly in the form of tensors of arbitrary order as input. These methods allow the relationships between dimensions of a tensor representation to be efficiently characterized. Moreover, they also allow the intrinsic local geometric and topological properties of the manifold embedded in a tensor space to be naturally estimated. Furthermore, they do not suffer from the curse of dimensionality and the high computational demand. We demonstrate the effectiveness of the proposed tensor embedding methods on a face recognition application and compare them with some previous methods. Extensive experiments show that our methods are not only more effective but also more efficient.
منابع مشابه
A New Document Embedding Method for News Classification
Abstract- Text classification is one of the main tasks of natural language processing (NLP). In this task, documents are classified into pre-defined categories. There is lots of news spreading on the web. A text classifier can categorize news automatically and this facilitates and accelerates access to the news. The first step in text classification is to represent documents in a suitable way t...
متن کاملWord Embeddings via Tensor Factorization
Most popular word embedding techniques involve implicit or explicit factorization of a word co-occurrence based matrix into low rank factors. In this paper, we aim to generalize this trend by using numerical methods to factor higher-order word co-occurrence based arrays, or tensors. We present four word embeddings using tensor factorization and analyze their advantages and disadvantages. One of...
متن کاملTensor Train Neighborhood Preserving Embedding
In this paper, we propose a Tensor Train Neighborhood Preserving Embedding (TTNPE) to embed multidimensional tensor data into low dimensional tensor subspace. Novel approaches to solve the optimization problem in TTNPE are proposed. For this embedding, we evaluate novel tradeoff gain among classification, computation, and dimensionality reduction (storage) for supervised learning. It is shown t...
متن کاملMissing Slice Recovery for Tensors Using a Low-rank Model in Embedded Space
Let us consider a case where all of the elements in some continuous slices are missing in tensor data. In this case, the nuclear-norm and total variation regularization methods usually fail to recover the missing elements. The key problem is capturing some delay/shift-invariant structure. In this study, we consider a low-rank model in an embedded space of a tensor. For this purpose, we extend a...
متن کاملMultiple M2-branes and the Embedding Tensor
We show that the Bagger-Lambert theory of multiple M2-branes fits into the general construction of maximally supersymmetric gauge theories using the embedding tensor technique. We apply the embedding tensor technique in order to systematically obtain the consistent gaugings of N = 8 superconformal theories in 2 + 1 dimensions. This leads to the Bagger-Lambert theory, with the embedding tensor p...
متن کامل