Engineering herbicide metabolism in tobacco and Arabidopsis with CYP76B1, a cytochrome P450 enzyme from Jerusalem artichoke.
نویسندگان
چکیده
The Jerusalem artichoke (Helianthus tuberosus) xenobiotic inducible cytochrome P450, CYP76B1, catalyzes rapid oxidative dealkylation of various phenylurea herbicides to yield nonphytotoxic metabolites. We have found that increased herbicide metabolism and tolerance can be achieved by ectopic constitutive expression of CYP76B1 in tobacco (Nicotiana tabacum) and Arabidopsis. Transformation with CYP76B1 conferred on tobacco and Arabidopsis a 20-fold increase in tolerance to linuron, a compound detoxified by a single dealkylation, and a 10-fold increase in tolerance to isoproturon or chlortoluron, which need successive catalytic steps for detoxification. Two constructs for expression of translational fusions of CYP76B1 with P450 reductase were prepared to test if they would yield even greater herbicide tolerance. Plants expressing these constructs had lower herbicide tolerance than CYP76B1 alone, which is apparently a consequence of reduced stability of the fusion proteins. In all cases, increased herbicide tolerance results from more extensive metabolism, as demonstrated with exogenously fed phenylurea. Beside increased herbicide tolerance, expression of CYP76B1 has no other visible phenotype in the transgenic plants. Our data indicate that CYP76B1 can function as a selectable marker for plant transformation, allowing efficient selection in vitro and in soil-grown plants. Plants expressing CYP76B1 may also be a potential tool for phytoremediation of contaminated sites.
منابع مشابه
Immunochemical characterization of NADPH-cytochrome P-450 reductase from Jerusalem artichoke and other higher plants.
Polyclonal antibodies were prepared against NADPH-cytochrome P-450 reductase purified from Jerusalem artichoke. These antibodies inhibited efficiently the NADPH-cytochrome c reductase activity of the purified enzyme, as well as of Jerusalem artichoke microsomes. Likewise, microsomal NADPH-dependent cytochrome P-450 mono-oxygenases (cinnamate and laurate hydroxylases) were efficiently inhibited....
متن کاملDual function of the cytochrome P450 CYP76 family from Arabidopsis thaliana in the metabolism of monoterpenols and phenylurea herbicides.
Comparative genomics analysis unravels lineage-specific bursts of gene duplications related to the emergence of specialized pathways. The CYP76C subfamily of cytochrome P450 enzymes is specific to Brassicaceae. Two of its members were recently associated with monoterpenol metabolism. This prompted us to investigate the CYP76C subfamily genetic and functional diversification. Our study revealed ...
متن کاملHerbicide-Resistant Tobacco Plants Expressing the Fused Enzyme between Rat Cytochrome P4501A1 (CYP1 A l ) and Yeast NADPH-Cytochrome P450 Oxidoreductase
Transgenic tobacco (Nicotiana tabacum cv Xanthi) plants expressing a genetically engineered fused enzyme between rat cytochrome P4501A1 (CYPlAl) and yeast NADPH-cytochrome P450 oxidoreductase were produced. The expression plasmid pCFC2 for the fused enzyme was constructed by insertion of the corresponding cDNA into the expression vector pNCOl under the control of the cauliflower mosaic virus 35...
متن کاملHerbicide-resistant tobacco plants expressing the fused enzyme between rat cytochrome P4501A1 (CYP1A1) and yeast NADPH-cytochrome P450 oxidoreductase.
Transgenic tobacco (Nicotiana tabacum cv Xanthi) plants expressing a genetically engineered fused enzyme between rat cytochrome P4501A1 (CYP1A1) and yeast NADPH-cytochrome P450 oxidoreductase were produced. The expression plasmid pGFC2 for the fused enzyme was constructed by insertion of the corresponding cDNA into the expression vector pNG01 under the control of the cauliflower mosaic virus 35...
متن کاملExpression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides.
A strategy based on the random isolation and screening of soybean cDNAs encoding cytochrome P450 monooxygenases (P450s) was used in an attempt to identify P450 isozymes involved in herbicide metabolism. Nine full-length (or near-full-length) P450 cDNAs representing eight distinct P450 families were isolated by using PCR-based technologies. Five of the soybean P450 cDNAs were expressed successfu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 130 1 شماره
صفحات -
تاریخ انتشار 2002