Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems
نویسندگان
چکیده
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated (Cas) systems in bacteria and archaea use RNA-guided nuclease activity to provide adaptive immunity against invading foreign nucleic acids. Here, we report the use of type II bacterial CRISPR-Cas system in Saccharomyces cerevisiae for genome engineering. The CRISPR-Cas components, Cas9 gene and a designer genome targeting CRISPR guide RNA (gRNA), show robust and specific RNA-guided endonuclease activity at targeted endogenous genomic loci in yeast. Using constitutive Cas9 expression and a transient gRNA cassette, we show that targeted double-strand breaks can increase homologous recombination rates of single- and double-stranded oligonucleotide donors by 5-fold and 130-fold, respectively. In addition, co-transformation of a gRNA plasmid and a donor DNA in cells constitutively expressing Cas9 resulted in near 100% donor DNA recombination frequency. Our approach provides foundations for a simple and powerful genome engineering tool for site-specific mutagenesis and allelic replacement in yeast.
منابع مشابه
A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae.
Despite recent advances in genome editing capabilities for the model organism Saccharomyces cerevisiae, the chromosomal integration of large biochemical pathways for stable industrial production remains challenging. In this work, we developed a simple platform for high-efficiency, single-step, markerless, multi-copy chromosomal integration of full biochemical pathways in Saccharomyces cerevisia...
متن کاملCRISPR/Cpf1 enables fast and simple genome editing of Saccharomyces cerevisiae
Cpf1 represents a novel single RNA-guided CRISPR/Cas endonuclease system suitable for genome editing with distinct features compared with Cas9. We demonstrate the functionality of three Cpf1 orthologues - Acidaminococcus spp. BV3L6 (AsCpf1), Lachnospiraceae bacterium ND2006 (LbCpf1) and Francisella novicida U112 (FnCpf1) - for genome editing of Saccharomyces cerevisiae. These Cpf1-based systems...
متن کاملFnCpf1: a novel and efficient genome editing tool for Saccharomyces cerevisiae
Cpf1 is a new class II family of CRISPR-Cas RNA-programmable endonucleases with unique features that make it a very attractive alternative or complement to Cas9 for genome engineering. Using constitutively expressed Cpf1 from Francisella novicida, the present study demonstrates that FnCpf1 can mediate RNA-guided DNA cleavage at targeted genomic loci in the popular model and industrial yeast Sac...
متن کاملYeast Still a Beast: Diverse Applications of CRISPR/Cas Editing Technology in S. cerevisiae
The recent discovery and use of CRISPR/Cas9 gene editing technology has provided new opportunities for scientific research in many fields of study including agriculture, genetic disorders, human disease, biotechnology, and basic biological research. The ability to precisely target DNA sequences and either remove, modify, or replace genetic sequences provides a new level of control in nearly all...
متن کاملCRISPR-Cas: the effective immune systems in the prokaryotes
Approximately all sequenced archaeal and half of eubacterial genomes have some sort of adaptive immune system, which enables them to target and cleave invading foreign genetic elements by an RNAi-like pathway. CRISPR–Cas (clustered regularly interspaced short palindromic repeats–CRISPR-associated proteins) systems consist of the CRISPR loci with multiple copies of a short repeat sequence separa...
متن کامل