State Space Decomposition for Nonautonomous Dynamical Systems
نویسندگان
چکیده
Decomposition of state spaces into dynamically different components is helpful for the understanding of dynamical behaviors of complex systems. A Conley type decomposition theorem is proved for nonautonomous dynamical systems defined on a non-compact but separable state space. Namely, the state space can be decomposed into a chain recurrent part and a gradient-like part. This result applies to both nonautonomous ordinary differential equations on Euclidean space (which is only locally compact), and nonautonomous partial differential equations on infinite dimensional function space (which is not even locally compact). This decomposition result is demonstrated by discussing a few concrete examples, such as the Lorenz system and the Navier-Stokes system, under time-dependent forcing.
منابع مشابه
On the shadowing property of nonautonomous discrete systems
In this paper we study shadowing property for sequences of mappings on compact metric spaces, i.e. nonautonomous discrete dynamical systems. We investigate the relation of weak contractions with shadowing and h-shadowing property.
متن کاملAttractors for Nonautonomous Multivalued Evolution Systems Generated by Time-dependent Subdifferentials
In a real separable Hilbert space, we consider nonautonomous evolution equations including time-dependent subdifferentials and their nonmonotone multivalued perturbations. In this paper, we treat the multivalued dynamical systems associated with time-dependent subdifferentials, in which the solution is not unique for a given initial state. In particular, we discuss the asymptotic behaviour of o...
متن کاملFractal Grammars which Recover from Perturbations
Neural symbolic integration may be a natural phenomenon of dynamical systems. Attractors—subsets of a state space to which a dynamical system returns when perturbed—are a broadly relevant dynamical systems phenomenon. The mathematical theory has mainly focused on autonomous dynamical systems (i.e., not driven by an environment) of the form f : X → X (where x(t+1) = f(x(t)) [iterated map] or dx ...
متن کاملTopological Pressure of Nonautonomous Dynamical Systems ⋆
We define and study topological pressure for the non-autonomous discrete dynamical systems given by a sequence {fi} ∞ i=1 of continuous self-maps of a compact metric space. In this paper, we obtain the basic properties and the invariant with respect to equiconjugacy of topological pressure for the nonautonomous discrete dynamical systems.
متن کاملOn an atomic decomposition in Banach spaces
An atomic decomposition is considered in Banach space. A method for constructing an atomic decomposition of Banach space, starting with atomic decomposition of subspaces is presented. Some relations between them are established. The proposed method is used in the study of the frame properties of systems of eigenfunctions and associated functions of discontinuous differential operators.
متن کامل