Caffeine alters resting-state functional connectivity measured by blood oxygenation level-dependent MRI
نویسندگان
چکیده
This study aimed to investigate the pharmacological effect of caffeine on functional connectivity measured by resting-state blood oxygenation level-dependent (BOLD) MRI in the motor cortex, visual cortex and default mode network (DMN). The protocols and procedures of the study were reviewed and approved by the Institutional Review Board of our institution. On a 3-T clinical MR system, 20 healthy volunteers underwent imaging before and after oral ingestion of a 200-mg over-the-counter caffeine pill (data from three individuals were excluded from further analysis because of excessive motion). The demographics of the remaining participants were as follows: female/male, 8/9; age, 21-35 years; non-habitual caffeine consumers over the past 6 months. Functional connectivity was calculated using the general linear model, assessed in terms of connected area (voxels) and statistical significance (Student t-values), and correlated with changes in regional cerebral blood flow as measured by arterial spin labeling MRI. Per-subject data analysis showed that caffeine decreased functional connectivity in the motor/visual cortices, but its effects on DMN varied among subjects. Correlation analysis of the changes in functional connectivity and regional blood flow suggested that the effect of caffeine on BOLD functional connectivity was predominantly neural (motor/visual cortices) and partly vascular (DMN). Group analysis showed that, after caffeine ingestion, DMN involved more attentional networks, and more extrastriate areas were integrated into the functional connectivity of the visual cortex, which may be associated with the known pharmacological effect of caffeine in elevating alertness. Caffeine consumption should thus be considered in the experimental design and data interpretation of functional connectivity studies using resting-state BOLD MRI.
منابع مشابه
Caffeine increases the temporal variability of resting-state BOLD connectivity in the motor cortex
Correlations between spontaneous fluctuations in the blood oxygenation level dependent (BOLD) signal measured with functional MRI are finding increasing use as measures of functional connectivity in the brain, where differences can potentially predict cognitive performance and diagnose disease. Caffeine, which is a widely consumed neural stimulant and vasoactive agent, has been found to decreas...
متن کاملPrincipal Component Regression Approach for Functional Connectivity of Neuronal Activations Measured by Functional MRI
A principal component regression (PCR) based approach for studying the functional connectivity of blood oxygenation level dependent (BOLD) responses of functional magnetic resonance imaging (fMRI) is proposed. The temporal dependency of BOLD responses from different spatial areas is determined from the eigenvectors of the correlation matrix.
متن کاملCaffeine-Induced Global Reductions in Resting-State BOLD Connectivity Reflect Widespread Decreases in MEG Connectivity
In resting-state functional magnetic resonance imaging (fMRI), the temporal correlation between spontaneous fluctuations of the blood oxygenation level dependent (BOLD) signal from different brain regions is used to assess functional connectivity. However, because the BOLD signal is an indirect measure of neuronal activity, its complex hemodynamic nature can complicate the interpretation of dif...
متن کاملMicrosoft Word - ISMRM2009-000775.DOC
INTRODUCTION Synchronized low-frequency fluctuations in the resting-state functional MRI (fMRI) signal have been suggested to be associated with functional connectivity in brain networks (1). However, the underlying mechanism of this connectivity is still poorly understood. To better interpret the resting signal, we examined spontaneous fluctuations at the level of cerebral metabolic rate of ox...
متن کاملMapping functional connectivity based on synchronized CMRO2 fluctuations during the resting state
Synchronized low-frequency fluctuations in the resting state functional MRI (fMRI) signal have been suggested to be associated with functional connectivity in brain networks. However, the underlying mechanism of this connectivity is still poorly understood, with the synchronized fluctuations could either originate from hemodynamic oscillations or represent true neuronal signaling. To better int...
متن کامل