Plant self-incompatibility in natural populations: a critical assessment of recent theoretical and empirical advances.
نویسندگان
چکیده
Self-incompatibility systems in plants are genetic systems that prevent self-fertilization in hermaphrodites through recognition and rejection of pollen expressing the same allelic specificity as that expressed in the pistils. The evolutionary properties of these self-recognition systems have been revealed through a fascinating interplay between empirical advances and theoretical developments. In 1939, Wright suggested that the main evolutionary force driving the genetic and molecular properties of these systems was strong negative frequency-dependent selection acting on pollination success. The empirical observation of high allelic diversity at the self-incompatibility locus in several species, followed by the discovery of very high molecular divergence among alleles in all plant families where the locus has been identified, supported Wright's initial theoretical predictions as well as many of its later developments. In the last decade, however, advances in the molecular characterization of the incompatibility reaction and in the analysis of allelic frequencies and allelic divergence from natural populations have stimulated new theoretical investigations that challenged some important assumptions of Wright's model of gametophytic self-incompatibility. We here review some of these recent empirical and theoretical advances that investigated: (i) the hypothesis that S-alleles are selectively equivalent, and the evolutionary consequences of genetic interactions between alleles; (ii) the occurrence of frequency-dependent selection in female fertility; (iii) the evolutionary genetics of self-incompatibility systems in subdivided populations; (iv) the evolutionary implications of the self-incompatibility locus's genetic architecture; and (v) of its interactions with the genomic environment.
منابع مشابه
Self-incompatibility in the Iranian Almond Cultivar ‘Mamaei’ Using Pollen Tube Growth, Fruit Set and PCR Technique
Self-incompatibility has been studied by using controlled pollination, pollen tube growth and PCR methods in the Iranian almond ‘Mamaei.’. Pollen tube growth and fruit set following self and cross-pollination treatments were evaluated. The percentage of initial and final fruit set was determined for each treatment at 30 and 60 days after controlled pollination. Pollen germination and pollen ...
متن کاملAssessment of Morphological and Tropane Alkaloids Diversity among some Henbane (Hyoscyamus niger L.) Populations
Background: Black henbane with the scientific name of Hyoscyamus niger which has a wide geographic distribution, is considered as one the most important species for tropane alkaloids extraction. Objective: In this research, morphological and tropane alkaloids variations were assessed within different population of H. niger in their natural habitats. Methods: Totally, 56 individuals were colle...
متن کاملMating system in Mexican populations of the annual herb Solanum rostratum Dunal (Solanaceae).
Traditionally, annual colonising species are expected to have high rates of self-fertilisation, although recent theoretical and empirical studies have shown that cross-fertilisation can be selected for under heterogeneous pollination environments. Solanum rostratum is a self-compatible annual herb that colonises disturbed habitats. Despite the lack of physiological mechanisms to prevent self-fe...
متن کاملReliability Assessment of Shallow Domes Using a Semi-Empirical Evaluation Procedure
Like other structures, shallow domes have imperfections from the prescribed values obtained by specifications during the construction process. Specifications define some tolerance values for imperfections. Despite consideration of these values, the critical load of a dome varies for each imperfection pattern. So the reliability plays an important role in domes safety. Theoretical evaluation pro...
متن کاملBalancing selection in the wild: testing population genetics theory of self-incompatibility in the rare species Brassica insularis.
Self-incompatibility (SI) systems are widespread mechanisms that prevent self-fertilization in angiosperms. They are generally encoded by one genome region containing several multiallelic genes, usually called the S-locus. They involve a recognition step between the pollen and the pistil component and pollen is rejected when it shares alleles with the pistil. The direct consequence is that rare...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular ecology
دوره 13 10 شماره
صفحات -
تاریخ انتشار 2004