Effect of LYRM1 knockdown on proliferation, apoptosis, differentiation and mitochondrial function in the P19 cell model of cardiac differentiation in vitro
نویسندگان
چکیده
To explore the effects of LYRM1 knockdown on proliferation, apoptosis, differentiation and mitochondrial function in the embryonic carcinoma (P19) cell model of cardiac differentiation. Knockdown of LYRM1 using small interfering RNA (siRNA) was confirmed by quantitative real-time PCR. Cell Counting Kit-8(CCK-8) proliferation assays and cell cycle analysis demonstrated that LYRM1 gene silencing significantly inhibited P19 cell proliferation. Flow cytometry and measurement of their caspase-3 activities revealed that knockdown of LYRM1 increased P19 cell apoptosis. Observation of morphological changes using an inverted microscope and expression analysis of specific differentiation marker genes using quantitative real-time PCR and Western blotting revealed that knockdown of LYRM1 significantly inhibited the differentiation of P19 cells into cardiomyocytes. Furthermore, real-time quantitative PCR applied to detect mitochondrial DNA (mtDNA) copy number implied that there was no significant difference in the LYRM1 knockdown group compared with the control group. Cellular ATP production investigated by luciferase-based luminescence assay was dramatically decreased in differentiated cells transfected with LYRM1 RNAi. Fluorescence microscopy and flow cytometery were used to detect the reactive oxygen species (ROS) and the mitochondrial membrane potential (MMP) showed that the level of ROS was dramatically increased and MMP was obviously decreased in differentiated cells transfected with LYRM1 RNAi. Collectively, knockdown of LYRM1 promoted apoptosis and suppressed proliferation and differentiation in P19 cells. In addition, knockdown of LYRM1 induced mitochondrial impairment in P19 cells during differentiation, which was reflected by decreased ATP synthesis, lower MMP and increased ROS levels.
منابع مشابه
Effects of miR-19b knockdown on the cardiac differentiation of P19 mouse embryonic carcinoma cells
MicroRNA-19b (miR‑19b) is part of the miR‑17‑92 cluster which is associated with cardiac development. It has previously been reported that the overexpression of miR‑19b increases proliferation, inhibits apoptosis and promotes differentiation of embryonic carcinoma cells (P19 cells). The aim of the current study was to investigate the effects of miR‑19b knockdown on the proliferation, apoptosis,...
متن کاملDifferentiation of P19 Carcinoma Cell Line into Cardiomyocytes by Oxytocin Hormone
Purpose: The Present study was designed to investigate the OT effects on differentiation of P19 carcinoma cell line into cardiomyocytes. Materials and Methods: P19 carcinoma cell line were cultivated in hanging drops for 2 days to form aggregates termed embryoid bodies (EBs) and in suspension for 5 days. The EBs was treated with oxytocin hormone and DMSO. The EBs were then plated onto gelatin-...
متن کاملLYRM1, a gene that promotes proliferation and inhibits apoptosis during heart development.
Congenital heart disease (CHD) is the most common type of birth defect, but its underlying molecular mechanisms remain unidentified. Previous studies determined that Homo sapiens LYR motif containing 1 (LYRM1) is a novel nucleoprotein expressed at the highest level in adipose tissue and in high levels in heart tissue. The LYRM1 gene may play an important role in the development of the human hea...
متن کاملDownregulation of HMGB1 by miR-103a-3p Promotes Cell Proliferation, Alleviates Apoptosis and Inflammation in a Cell Model of Osteoarthritis
Background: MiR-103a-3p is a small non-coding RNA and has been reported to be involved in osteogenic proliferation and differentiation, but the role of miR-103a-3p in human osteoarthritis (OA) remains unclear. Objectives: In this study, we aimed to explore its function and molecular target in chondrocytes during OA pathogenesis. Materials an...
متن کاملmiR-20a regulates proliferation, differentiation and apoptosis in P19 cell model of cardiac differentiation by targeting Smoothened
MicroRNA (miR)-20a, a member of the miR-17-92 cluster related to cardiac development, was obviously downregulated in myocardially differentiated P19 cells compared with normal P19 cells. Smoothened (SMO) is a member of the Hh pathway. Hh signaling induces cardiac differentiation in P19 cells, and SMO mediates the Hh pathway during embryonic development. Using bioinformatic prediction software T...
متن کامل