Long-term Forecasting using Tensor-Train RNNs

نویسندگان

  • Rose Yu
  • Stephan Zheng
  • Anima Anandkumar
  • Yisong Yue
چکیده

We present Tensor-Train RNN (TT-RNN), a novel family of neural sequence architectures for multivariate forecasting in environments with nonlinear dynamics. Long-term forecasting in such systems is highly challenging, since there exist long-term temporal dependencies, higher-order correlations and sensitivity to error propagation. Our proposed tensor recurrent architecture addresses these issues by learning the nonlinear dynamics directly using higher order moments and high-order state transition functions. Furthermore, we decompose the higher-order structure using the tensor-train (TT) decomposition to reduce the number of parameters while preserving the model performance. We theoretically establish the approximation properties of Tensor-Train RNNs for general sequence inputs, and such guarantees are not available for usual RNNs. We also demonstrate significant long-term prediction improvements over general RNN and LSTM architectures on a range of simulated environments with nonlinear dynamics, as well on real-world climate and traffic data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimizing and Contrasting Recurrent Neural Network Architectures

Recurrent Neural Networks (RNNs) have long been recognized for their potential to model complex time series. However, it remains to be determined what optimization techniques and recurrent architectures can be used to best realize this potential. The experiments presented take a deep look into Hessian free optimization, a powerful second order optimization method that has shown promising result...

متن کامل

R2N2: Residual Recurrent Neural Networks for Multivariate Time Series Forecasting

Multivariate time-series modeling and forecasting is an important problem with numerous applications. Traditional approaches such as VAR (vector auto-regressive) models and more recent approaches such as RNNs (recurrent neural networks) are indispensable tools in modeling time-series data. In many multivariate time series modeling problems, there is usually a significant linear dependency compo...

متن کامل

Tensor Decomposition for Compressing Recurrent Neural Network

In the machine learning fields, Recurrent Neural Network (RNN) has become a popular algorithm for sequential data modeling. However, behind the impressive performance, RNNs require a large number of parameters for both training and inference. In this paper, we are trying to reduce the number of parameters and maintain the expressive power from RNN simultaneously. We utilize several tensor decom...

متن کامل

Long Short-Term Memory Based Recurrent Neural Network Architectures for Large Vocabulary Speech Recognition

Long Short-Term Memory (LSTM) is a recurrent neural network (RNN) architecture that has been designed to address the vanishing and exploding gradient problems of conventional RNNs. Unlike feedforward neural networks, RNNs have cyclic connections making them powerful for modeling sequences. They have been successfully used for sequence labeling and sequence prediction tasks, such as handwriting ...

متن کامل

Different Methods of Long-Term Electric Load Demand Forecasting a Comprehensive Review

Long-term demand forecasting presents the first step in planning and developing future generation, transmission and distribution facilities. One of the primary tasks of an electric utility accurately predicts load demand requirements at all times, especially for long-term. Based on the outcome of such forecasts, utilities coordinate their resources to meet the forecasted demand using a least-co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.00073  شماره 

صفحات  -

تاریخ انتشار 2017