Bias correction in a multivariate normal regression model with general parameterization

نویسندگان

  • Alexandre G. Patriota
  • Artur J. Lemonte
چکیده

This paper develops a bias correction scheme for a multivariate normal model under a general parameterization. In the model, the mean vector and the covariance matrix share the same parameters. It includes many important regression models available in the literature as special cases, such as (non)linear regression, errors-in-variables models, and so forth. Moreover, heteroscedastic situations may also be studied within our framework. We derive a general expression for the second-order biases of maximum likelihood estimates of the model parameters and show that it is always possible to obtain the second order bias by means of ordinary weighted lest-squares regressions. We enlighten such general expression with an errors-in-variables model and also conduct some simulations in order to verify the performance of the corrected estimates. The simulation results show that the bias correction scheme yields nearly unbiased estimators. We also present an empirical ilustration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Non-Random Dropout Model for Analyzing Longitudinal Skew-Normal Response

In this paper, multivariate skew-normal distribution is em- ployed for analyzing an outcome based dropout model for repeated mea- surements with non-random dropout in skew regression data sets. A probit regression is considered as the conditional probability of an ob- servation to be missing given outcomes. A simulation study of using the proposed methodology and comparing it with a semi-parame...

متن کامل

A comparative study of quantitative mapping methods for bias correction of ERA5 reanalysis precipitation data

This study evaluates the ability of different quantitative mapping (QM) methods as a bias correction technique for ERA5 reanalysis precipitation data. Climate type and geographical location can affect the performance of the bias correction method due to differences in precipitation characteristics. For this purpose, ERA5 reanalysis precipitation data for the years 1989-2019 for 10 selected syno...

متن کامل

The Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data

The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...

متن کامل

P95: Self-Focus Attention and Interpretation Bias in Social Phobia Patients and Compared with Normal Subjects

This study compared focus attention and interpretation biases in social phobia patients and normal subject. In this study with causal- comparative method 100 subjects with social phobia and 100 normal individuals have compared. Subjects were selected through cluster sampling among Tabriz university students. Data scale of social phobia, attention bias and interpretation of the data was performe...

متن کامل

Multivariate Local Polynomial Kernel Estimators: Leading Bias and Asymptotic Distribution∗

Masry (1996b) provides estimation bias and variance expression for a general local polynomial kernel estimator in a general multivariate regression framework. Under smoother conditions on the unknown regression and by including more refined approximation terms than that in Masry (1996b), we extend the result of Masry (1996b) to obtain explicit leading bias terms for the whole vector of the loca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009