Nucleotide sequence, functional characterization and evolution of pFKN, a virulence plasmid in Pseudomonas syringae pathovar maculicola.
نویسندگان
چکیده
Pseudomonas syringae pv. maculicola strain M6 (Psm M6) carries the avrRpm1 gene, encoding a type III effector, on a 40 kb plasmid, pFKN. We hypothesized that this plasmid might carry additional genes required for pathogenesis on plants. We report the sequence and features of pFKN. In addition to avrRpm1, pFKN carries an allele of another type III effector, termed avrPphE, and a gene of unknown function (ORF8), expression of which is induced in planta, suggesting a role in the plant-pathogen interaction. The region of pFKN carrying avrRpm1, avrPphE and ORF8 exhibits several features of pathogenicity islands (PAIs). Curing of pFKN (creating Psm M6C) caused a significant reduction in virulence on Arabidopsis leaves. However, complementation studies using Psm M6C demonstrated an obvious virulence function only for avrRpm1. pFKN can integrate and excise from the chromosome of Psm M6 at low frequency via homologous recombination between identical sequence segments located on the chromosome and on pFKN. These segments are part of two nearly identical transposons carrying avrPphE. The avrPphE transposon was also detected in other strains of P. s. pv. maculicola and in P. s. tomato strain DC3000. The avrPphE transposon was found inserted at different loci in different strains. The analysis of sequences surrounding the avrPphE transposon insertion site in the chromosome of Psm M6 indicates that pFKN integrates into a PAI that encodes type III effectors. The integration of pFKN into this chromosomal region may therefore be seen as an evolutionary process determining the formation of a new PAI in the chromosome of Psm M6.
منابع مشابه
Nucleotide sequence and evolution of the five-plasmid complement of the phytopathogen Pseudomonas syringae pv. maculicola ES4326.
Plasmids are transmissible, extrachromosomal genetic elements that are often responsible for environmental or host-specific adaptations. In order to identify the forces driving the evolution of these important molecules, we determined the complete nucleotide sequence of the five-plasmid complement of the radish and Arabidopsis pathogen Pseudomonas syringae pv. maculicola ES4326 and conducted an...
متن کاملA draft genome sequence and functional screen reveals the repertoire of type III secreted proteins of Pseudomonas syringae
Background: Pseudomonas syringae is a widespread bacterial pathogen that causes disease on a broad range of economically important plant species. Pathogenicity of P. syringae strains is dependent on the type III secretion system, which secretes a suite of up to about thirty virulence 'effector' proteins into the host cytoplasm where they subvert the eukaryotic cell physiology and disrupt host d...
متن کاملComparative genomic analysis of the pPT23A plasmid family of Pseudomonas syringae.
Members of the pPT23A plasmid family of Pseudomonas syringae play an important role in the interaction of this bacterial pathogen with host plants. Complete sequence analysis of several pPT23A family plasmids (PFPs) has provided a glimpse of the gene content and virulence function of these plasmids. We constructed a macroarray containing 161 genes to estimate and compare the gene contents of 23...
متن کاملA High-Throughput Forward Genetic Screen Identifies Genes Required for Virulence of Pseudomonas syringae pv. maculicola ES4326 on Arabidopsis
Successful pathogenesis requires a number of coordinated processes whose genetic bases remain to be fully characterized. We utilized a high-throughput, liquid media-based assay to screen transposon disruptants of the phytopathogen Pseudomonas syringae pv. maculicola ES4326 to identify genes required for virulence on Arabidopsis. Many genes identified through this screen were involved in process...
متن کاملComparative Genome Analysis Provides Insights into the Evolution and Adaptation of Pseudomonas syringae pv. aesculi on Aesculus hippocastanum
A recently emerging bleeding canker disease, caused by Pseudomonas syringae pathovar aesculi (Pae), is threatening European horse chestnut in northwest Europe. Very little is known about the origin and biology of this new disease. We used the nucleotide sequences of seven commonly used marker genes to investigate the phylogeny of three strains isolated recently from bleeding stem cankers on Eur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular microbiology
دوره 47 6 شماره
صفحات -
تاریخ انتشار 2003