Interaction and transport of thiazide diuretics, loop diuretics, and acetazolamide via rat renal organic anion transporter rOAT1.
نویسندگان
چکیده
The renal tubular secretion of thiazides and loop diuretics via the organic anion transport system in renal tubules is required for them to reach their principal sites of action. Similarly, acetazolamide, a diuretic clinically administered for glaucoma, is excreted from the kidney by glomerular filtration and tubular secretion. In this study, we investigated the interaction and transport of these diuretics via the rat renal organic anion transporter rOAT1 by using Xenopus laevis oocyte expression system. p-[(14)C]Aminohippurate (PAH) uptake by rOAT1-expressing oocytes was inhibited in the presence of a thiazide (chlorothiazide, cyclothiazide, hydrochlorothiazide), a loop diuretic (bumetanide, ethacrynic acid, furosemide), or a carbonic anhydrase inhibitor (acetazolamide, ethoxzolamide, methazolamide). Dixon plot analysis demonstrated that the inhibition constant (K(i)) value was 1.1 mM for acetazolamide, 150 microM for hydrochlorothiazide, 9.5 microM for furosemide, and 5. 5 microM for bumetanide. Kinetic analysis revealed that acetazolamide inhibited rOAT1 competitively and that inhibition style of furosemide was a mixture of competitive and noncompetitive. [(14)C]PAH efflux was significantly enhanced when the rOAT1-expressing oocytes were incubated in the presence of unlabeled PAH, alpha-ketoglutarate, acetazolamide, chlorothiazide, or hydrochlorothiazide. rOAT1 stimulated acetazolamide uptake, which was inhibited by probenecid. Although the loop diuretics had little trans-stimulation effect on [(14)C]PAH efflux via rOAT1, the rOAT1-mediated furosemide uptake was observed. These findings suggest that rOAT1 contributes, at least in part, to the renal tubular secretion of acetazolamide, thiazides, and loop diuretics.
منابع مشابه
Overlapping in vitro and in vivo specificities of the organic anion transporters OAT1 and OAT3 for loop and thiazide diuretics.
Organic anion transporter (OAT) genes have been implicated in renal secretion of organic anions, but the individual in vivo contributions of OAT1 (first identified as NKT) and OAT3 remain unclear. Potential substrates include loop diuretics (e.g., furosemide) and thiazide diuretics (e.g., bendroflumethiazide), which reach their tubular sites of action mainly by proximal tubular secretion. Previ...
متن کاملRat renal organic anion transporter rOAT1 mediates transport of urinary-excreted cephalosporins, but not of biliary-excreted cefoperazone.
Most cephalosporin antibiotics are excreted into urine via glomerular filtration and active tubular secretion by renal organic anion transporters. In this study, we investigated the interaction of cephalosporins with rat organic anion transporter rOAT1, mainly expressed at the basolateral membrane of the renal proximal tubules, using Xenopus laevis oocytes, to assess the roles of rOAT1 in renal...
متن کاملUp-regulation of organic anion transporter 1 protein is induced by chronic furosemide or hydrochlorothiazide infusion in rat kidney.
BACKGROUND Thiazide and loop diuretics are secreted from the proximal tubule via the organic anion transport system to reach their principal sites of action. Recently, a multispecific organic anion transporter 1 (OAT1) was identified in rat kidney and was localized to the basolateral membrane of the S2 segment in the proximal tubule. We postulated that interactions between thiazide or loop diur...
متن کاملDiuresis by intravenous administration of xanthurenic acid in rats, and inhibition by probenecid.
The conjugates with sulfate and glucoside of xanthurenic acid, a tryptophan metabolite, were reported to show natriuresis. Sulfotransferase for xanthurenic acid works in the renal proximal tubule to produce the sulfate of xanthurenic acid as well as the liver, and we recently found that xanthurenic acid is a substrate of renal organic anion transporter OAT1. The purpose of this study was to exa...
متن کاملPhysiological role of SLC12 family members in the kidney.
The solute carrier family 12, as numbered according to Human Genome Organisation (HUGO) nomenclature, encodes the electroneutral cation-coupled chloride cotransporters that are expressed in many cells and tissues; they play key roles in important physiological events, such as cell volume regulation, modulation of the intracellular chloride concentration, and transepithelial ion transport. Most ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 295 1 شماره
صفحات -
تاریخ انتشار 2000