A Network-based End-to-End Trainable Task-oriented Dialogue System
نویسندگان
چکیده
Teaching machines to accomplish tasks by conversing naturally with humans is challenging. Currently, developing taskoriented dialogue systems requires creating multiple components and typically this involves either a large amount of handcrafting, or acquiring costly labelled datasets to solve a statistical learning problem for each component. In this work we introduce a neural network-based text-in, textout end-to-end trainable goal-oriented dialogue system along with a new way of collecting dialogue data based on a novel pipe-lined Wizard-of-Oz framework. This approach allows us to develop dialogue systems easily and without making too many assumptions about the task at hand. The results show that the model can converse with human subjects naturally whilst helping them to accomplish tasks in a restaurant search domain.
منابع مشابه
End-to-End Optimization of Task-Oriented Dialogue Model with Deep Reinforcement Learning
In this paper, we present a neural network based task-oriented dialogue system that can be optimized end-to-end with deep reinforcement learning (RL). The system is able to track dialogue state, interface with knowledge bases, and incorporate query results into agent’s responses to successfully complete task-oriented dialogues. dialogue policy learning is conducted with a hybrid supervised and ...
متن کاملAn End-to-End Trainable Neural Network Model with Belief Tracking for Task-Oriented Dialog
We present a novel end-to-end trainable neural network model for task-oriented dialog systems. The model is able to track dialog state, issue API calls to knowledge base (KB), and incorporate structured KB query results into system responses to successfully complete task-oriented dialogs. The proposed model produces well-structured system responses by jointly learning belief tracking and KB res...
متن کاملEnd-to-End Reinforcement Learning of Dialogue Agents for Information Access
This paper proposes KB-InfoBot—a dialogue agent that provides users with an entity from a knowledge base (KB) by interactively asking for its attributes. All components of the KB-InfoBot are trained in an end-to-end fashion using reinforcement learning. Goal-oriented dialogue systems typically need to interact with an external database to access real-world knowledge (e.g. movies playing in a ci...
متن کاملTowards End-to-End Spoken Dialogue Systems with Turn Embeddings
Training task-oriented dialogue systems requires significant amount of manual effort and integration of many independently built components; moreover, the pipeline is prone to errorpropagation. End-to-end training has been proposed to overcome these problems by training the whole system over the utterances of both dialogue parties. In this paper we present an end-to-end spoken dialogue system a...
متن کاملBuilding End-To-End Dialogue Systems Using Generative Hierarchical Neural Network Models
We investigate the task of building open domain, conversational dialogue systems based on large dialogue corpora using generative models. Generative models produce system responses that are autonomously generated word-by-word, opening up the possibility for realistic, flexible interactions. In support of this goal, we extend the recently proposed hierarchical recurrent encoder-decoder neural ne...
متن کامل