The reelin and GAD67 promoters are activated by epigenetic drugs that facilitate the disruption of local repressor complexes.
نویسندگان
چکیده
The epigenetic down-regulation of genes is emerging as a possible underlying mechanism of the GABAergic neuron dysfunction in schizophrenia. For example, evidence has been presented to show that the promoters associated with reelin and GAD67 are down-regulated as a consequence of DNA methyltransferase (DNMT)-mediated hypermethylation. Using neuronal progenitor cells to study this regulation, we have previously demonstrated that DNMT inhibitors coordinately increase reelin and GAD67 mRNAs. Here, we report that another group of epigenetic drugs, histone deacetylase (HDAC) inhibitors, activate these two genes with dose and time dependence comparable with that of DNMT inhibitors. In parallel, both groups of drugs decrease DNMT1, DNMT3A, and DNMT3B protein levels and reduce DNMT enzyme activity. Furthermore, induction of the reelin and GAD67 mRNAs is accompanied by the dissociation of repressor complexes containing all three DNMTs, MeCP2, and HDAC1 from the corresponding promoters and by increased local histone acetylation. Our data imply that drug-induced promoter demethylation is relevant for maximal activation of reelin and GAD67 transcription. The results suggest that HDAC and DNMT inhibitors activate reelin and GAD67 expression through similar mechanisms. Both classes of drugs attenuate, directly or indirectly, the enzymatic and transcriptional repressor activities of DNMTs and HDACs. These data provide a mechanistic rationale for the use of epigenetic drugs, individually or in combination, as a potential novel therapeutic strategy to alleviate deficits associated with schizophrenia.
منابع مشابه
Reelin and glutamic acid decarboxylase67 promoter remodeling in an epigenetic methionine-induced mouse model of schizophrenia.
Reduction of prefrontal cortex glutamic acid decarboxylase (GAD67) and reelin (mRNAs and proteins) expression is the most consistent finding reported by several studies of postmortem schizophrenia (SZ) brains. Converging evidence suggests that the reduced GAD67 and reelin expression in cortical GABAergic interneurons of SZ brains is the consequence of an epigenetic hypermethylation of RELN and ...
متن کاملDNA (cytosine-5) methyltransferase inhibitors: a potential therapeutic agent for schizophrenia.
In this issue of Molecular Pharmacology, Kundakovic et al. (p. 644) present compelling evidence suggesting that the promoters for reelin and GAD67 are coordinately regulated. The regulation occurs at the level of DNA (cytosine-5) methylation. Moreover, the authors present evidence suggesting that pharmacologic inhibition of DNA methyltransferase results in reversal of methylation, loss of methy...
متن کاملDNA methyltransferase inhibitors coordinately induce expression of the human reelin and glutamic acid decarboxylase 67 genes.
Reelin and glutamic acid decarboxylase 67 (GAD67) mRNAs and protein levels are substantially reduced in postmortem brains of patients with schizophrenia. Increasing evidence suggests that the observed down-regulation of reelin and GAD67 gene expression may be caused by dysfunction of the epigenetic regulatory mechanisms operative in cortical GABAergic interneurons. To explore whether human reel...
متن کاملClozapine and sulpiride but not haloperidol or olanzapine activate brain DNA demethylation.
Cortical GABAergic dysfunction, a hallmark of both schizophrenia (SZ) and bipolar (BP) disorder pathophysiologies may relate to the hypermethylation of GABAergic gene promoters (i.e., reelin and GAD67). Benefits elicited by a combination of atypical antipsychotics with valproate (VPA) (a histone deacetylase inhibitor that may also activate brain DNA demethylation) in SZ or BP disorder treatment...
متن کاملP-157: Polymorphic Core Promoter GA-repeats Alter Gene Expression of The Early Embryonic Developmental Genes
Background: We examine the GA-repeat core promoters of MECOM and GABRA3 in human embryonic kidney-293 cell line and show that those GA-repeats have promoter activity,and those different alleles of the repeats can significantly alter gene expression.We propose a novel role for GA-repeat core promoters to regulate gene expression in the genes involved in development and evolution. Materials and M...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 75 2 شماره
صفحات -
تاریخ انتشار 2009