PPARγ Regulates Trophoblast Proliferation and Promotes Labyrinthine Trilineage Differentiation

نویسندگان

  • Mana M. Parast
  • Heather Yu
  • Aleksandar Ciric
  • Mark W. Salata
  • Vannessa Davis
  • David S. Milstone
چکیده

BACKGROUND Abnormal trophoblast differentiation and function is the basis of many placenta-based pregnancy disorders, including pre-eclampsia and fetal growth restriction. PPARgamma, a ligand-activated nuclear receptor, plays essential roles in placental development; null murine embryos die at midgestation due to abnormalities in all placental layers, in particular, small labyrinth and expanded giant cell layer. Previous studies have focused mostly on the role of PPARgamma in trophoblast invasion. Based on the previously reported role of PPARgamma in preadipocyte differentiation, we hypothesized that PPARgamma also plays a pivotal role in trophoblast differentiation. To test this hypothesis, we report derivation of wild-type and PPARgamma-null trophoblast stem (TS) cells. METHODOLOGY/PRINCIPAL FINDINGS PPARgamma-null TS cells showed defects in both proliferation and differentiation, specifically into labyrinthine trophoblast. Detailed marker analysis and functional studies revealed reduced differentiation of all three labyrinthine lineages, and enhanced giant cell differentiation, particularly the invasive subtypes. In addition, rosiglitazone, a specific PPARgamma agonist, reduced giant cell differentiation, while inducing Gcm1, a key regulator in labyrinth. Finally, reintroducing PPARgamma into null TS cells, using an adenovirus, normalized invasion and partially reversed defective labyrinthine differentiation, as assessed both by morphology and marker analysis. CONCLUSIONS/SIGNIFICANCE In addition to regulating trophoblast invasion, PPARgamma plays a predominant role in differentiation of labyrinthine trophoblast lineages, which, along with fetal endothelium, form the vascular exchange interface with maternal blood. Elucidating cellular and molecular mechanisms mediating PPARgamma action will help determine if modulating PPARgamma activity, for which clinical pharmacologic agonists already exist, might modify the course of pregnancy disorders associated with placental dysfunction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PPAR-γ Regulates Trophoblast Differentiation in the BeWo Cell Model

Common pregnancy complications, such as severe preeclampsia and intrauterine growth restriction, disrupt pregnancy progression and impair maternal and fetal wellbeing. Placentas from such pregnancies exhibit lesions principally within the syncytiotrophoblast (SCT), a layer in direct contact with maternal blood. In humans and mice, glial cell missing-1 (GCM-1) promotes differentiation of underly...

متن کامل

Mst1 and Mst2 Are Essential Regulators of Trophoblast Differentiation and Placenta Morphogenesis

The placenta is essential for survival and growth of the fetus because it promotes the delivery of nutrients and oxygen from the maternal circulation as well as fetal waste disposal. Mst1 and Mst2 (Mst1/2), key components of the mammalian hpo/Mst signaling pathway, encode two highly conserved Ser/Thr kinases and play important roles in the prevention of tumorigenesis and autoimmunity, control o...

متن کامل

Notch signalling in placental development and gestational diseases.

Activation of Notch signalling upon cell-cell contact of neighbouring cells controls a plethora of cellular processes such as stem cell maintenance, cell lineage determination, cell proliferation, and survival. Accumulating evidence suggests that the pathway also critically regulates these events during placental development and differentiation. Herein, we summarize our present knowledge about ...

متن کامل

Phosphorylation of PPARγ at Ser84 promotes glycolysis and cell proliferation in hepatocellular carcinoma by targeting PFKFB4

Peroxisome proliferator-activating receptor γ (PPARγ), a transcription factor, is involved in many important biological processes, including cell terminal differentiation, survival and apoptosis. However, the role of PPARγ, which regulates tumour promoter and oncogene expression, is not well understood in hepatocellular carcinoma (HCC). In the present study, based on evidence from clinical samp...

متن کامل

Leptin Antagonizes Peroxisome Proliferator-Activated Receptor-γ Signaling in Growth Plate Chondrocytes

Leptin is an obesity-associated cytokine-like hormone encoded by the ob gene. Recent studies reveal that leptin promotes proliferation and differentiation of chondrocytes, suggesting a peripheral role of leptin in regulating growth plate function. Peroxisome proliferator-activated receptor-γ (PPARγ) is a transcriptional regulator of adipogenesis. Locally, PPARγ negatively regulates chondrogenic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009