The Genetic Architecture of Coordinately Evolving Male Wing Pigmentation and Courtship Behavior in Drosophila elegans and Drosophila gunungcola
نویسندگان
چکیده
Many adaptive phenotypes consist of combinations of simpler traits that act synergistically, such as morphological traits and the behaviors that use those traits. Genetic correlations between components of such combinatorial traits, in the form of pleiotropic or tightly linked genes, can in principle promote the evolution and maintenance of these traits. In the Oriental Drosophila melanogaster species group, male wing pigmentation shows phylogenetic correlations with male courtship behavior; species with male-specific apical wing melanin spots also exhibit male visual wing displays, whereas species lacking these spots generally lack the displays. In this study, we investigated the quantitative genetic basis of divergence in male wing spots and displays between D. elegans, which possesses both traits, and its sibling species D. gunungcola, which lacks them. We found that divergence in wing spot size is determined by at least three quantitative trait loci (QTL) and divergence in courtship score is determined by at least four QTL. On the autosomes, QTL locations for pigmentation and behavior were generally separate, but on the X chromosome two clusters of QTL were found affecting both wing pigmentation and courtship behavior. We also examined the genetic basis of divergence in three components of male courtship, wing display, circling, and body shaking. Each of these showed a distinct genetic architecture, with some QTL mapping to similar positions as QTL for overall courtship score. Pairwise tests for interactions between marker loci revealed evidence of epistasis between putative QTL for wing pigmentation but not those for courtship behavior. The clustering of X-linked QTL for male pigmentation and behavior is consistent with the concerted evolution of these traits and motivates fine-scale mapping studies to elucidate the nature of the contributing genetic factors in these intervals.
منابع مشابه
Rab11 is required for maintenance of cell shape via βPS integrin mediated cell adhesion in Drosophila
In eukaryotes, vesicle trafficking is regulated by the small monomeric GTPases of the Rab protein family. Rab11, (a subfamily of the Ypt/Rab gene family) an evolutionarily conserved, ubiquitously expressed subfamily of small monomeric Rab GTPases, has been implicated in regulating vesicular trafficking through the recycling of endosomal compartment. In an earlier communication, we have shown th...
متن کاملSound production during agonistic behavior of male Drosophila melanogaster.
Male Drosophila fruit flies acquire and defend territories in order to attract females for reproduction. Both, male-directed agonistic behavior and female-directed courtship consist of series of recurrent stereotypical components. Various studies demonstrated the importance of species-specific sound patterns generated by wing vibration as being critical for male courtship success. In this study...
متن کاملEvolution of Multiple Additive Loci Caused Divergence between Drosophila yakuba and D. santomea in Wing Rowing during Male Courtship
In Drosophila, male flies perform innate, stereotyped courtship behavior. This innate behavior evolves rapidly between fly species, and is likely to have contributed to reproductive isolation and species divergence. We currently understand little about the neurobiological and genetic mechanisms that contributed to the evolution of courtship behavior. Here we describe a novel behavioral differen...
متن کاملImage Tracking Study on Courtship Behavior of Drosophila
BACKGROUND In recent years, there have been extensive studies aimed at decoding the DNA. Identifying the genetic cause of specific changes in a simple organism like Drosophila may help scientists recognize how multiple gene interactions may make some people more susceptible to heart disease or cancer. Investigators have devised experiments to observe changes in the gene networks in mutant Droso...
متن کاملP1 interneurons promote a persistent internal state that enhances inter-male aggression in Drosophila.
How brains are hardwired to produce aggressive behavior, and how aggression circuits are related to those that mediate courtship, is not well understood. A large-scale screen for aggression-promoting neurons in Drosophila identified several independent hits that enhanced both inter-male aggression and courtship. Genetic intersections revealed that 8-10 P1 interneurons, previously thought to exc...
متن کامل