Peristaltic Transport of Carreau-Yasuda Fluid in a Curved Channel with Slip Effects

نویسندگان

  • Tasawar Hayat
  • Fahad Munir Abbasi
  • Bashir Ahmad
  • Ahmed Alsaedi
چکیده

The wide occurrence of peristaltic pumping should not be surprising at all since it results physiologically from neuro-muscular properties of any tubular smooth muscle. Of special concern here is to predict the rheological effects on the peristaltic motion in a curved channel. Attention is focused to develop and simulate a nonlinear mathematical model for Carreau-Yasuda fluid. The progressive wave front of peristaltic flow is taken sinusoidal (expansion/contraction type). The governing problem is challenge since it has nonlinear differential equation and nonlinear boundary conditions even in the long wavelength and low Reynolds number regime. Numerical solutions for various flow quantities of interest are presented. Comparison for different flow situations is also made. Results of physical quantities are interpreted with particular emphasis to rheological characteristics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heat Transfer on Peristaltic Transport with Slip Condition in an Asymmetric Porous Channel (TECHNICAL NOTE)

Simultaneous effects of slip and heat transfer on peristaltic transport of an incompressible electrically conducting viscous fluid  in an  asymmetric channel is studied under the assumptions of long wavelength and low Reynold number .The  asymmetry is produced by choosing the peristaltic wave train on the walls to have different amplitudes and phase.Exect solutions for stream function,velocity ...

متن کامل

Numerical simulation for peristalsis of Carreau-Yasuda nanofluid in curved channel with mixed convection and porous space

Main theme of present investigation is to model and analyze the peristaltic activity of Carraeu-Yasuda nanofluid saturating porous space in a curved channel. Unlike the traditional approach, the porous medium effects are characterized by employing modified Darcy's law for Carreau-Yasuda fluid. To our knowledge this is first attempt in this direction for Carreau-Yasuda fluid. Heat and mass trans...

متن کامل

Effects of Slip and Heat Transfer on MHD Peristaltic Flow in An Inclined Asymmetric Channel

Peristaltic transport of an incompressible electrically conducting viscous fluid in an inclined planar asymmetric channel is studied. The asymmetry is produced by choosing the peristaltic wave train on the walls to have different amplitude and phase. The closed form solutions of momentum and energy equation in presence of viscous dissipation term are obtained for long wave length and low Reynol...

متن کامل

MHD thermal radiation and chemical reaction effects with peristaltic transport of the eyring-powell fluid through a porous medium

In this paper, we analyze the thermal radiation and chemical reaction impacts on MHD peristaltic motion of the Eyring-Powell fluid through a porous medium in a channel with compliant walls under slip conditions for velocity, temperature, and concentration. Assumptions of a long wave length and low Reynolds number are considered. The modeled equations are computed by using the perturbation metho...

متن کامل

Influence of Induced Magnetic Field and Partial Slip on the Peristaltic Flow of a Couple Stress Fluid in an Asymmetric Channel

This paper describes the effects of induced magnetic field and partial slip on the peristaltic flow of a couple stress fluids in an asymmetric channel. The two dimensional equation of couple stress fluid are simplified by making the assumptions of long wave length and low Reynolds number. The exact solutions of reduced momentum equation and magnetic force function have been computed in wave...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014