Ultra-low viscosity liquid crystal materials
نویسندگان
چکیده
We report five ultra-low viscosity nematic liquid crystal mixtures with birefringence around 0.1, dielectric anisotropy in the range of 3 to 6, and clearing temperature about 80°C. A big advantage of these low viscosity mixtures is low activation energy, which significantly suppresses the rising rate of viscosity at low temperatures. Using our mixture M3 as an example, the response time of a 3-μm cell at −20°C is only 30 ms. Widespread application of these materials for display devices demanding a fast response time, especially at low temperatures, is foreseeable. ©2015 Optical Society of America OCIS codes: (160.3710) Liquid crystals; (230.3720) Liquid-crystal devices. References and links 1. M. Schadt, “Milestone in the history of field-effect liquid crystal displays and materials,” Jpn. J. Appl. Phys. 48, 03B001 (2009). 2. K.-H. Fan-Chiang, C.-C. Lai, J.-T. Cheng, C.-C. Yen, B.-J. Liao, Y.-Y. Ho, and Y.-C. Chen, “P-173: A 0.38” field-sequential-color liquid-crystal-on-silicon microdisplay for mobile projectors,” Dig. Tech. Pap. 40(1), 1770– 1773 (2009). 3. Z. Luo, F. Peng, H. Chen, M. Hu, J. Li, Z. An, and S. T. Wu, “Fast-response liquid crystals for high image quality wearable displays,” Opt. Mater. Express 5(3), 603–610 (2015). 4. Y. Iwata, M. Murata, K. Tanaka, T. Ohtake, H. Yoshida, and K. Miyachi, “Novel super fast response vertical alignment-liquid crystal display with extremely wide temperature range,” J. Soc. Inf. Disp. 22(1), 35–42 (2014). 5. S. J. Kim, H. Y. Kim, S. H. Lee, Y. K. Lee, K. C. Park, and J. Jang, “Cell gap-dependent transmittance characteristic in a fringe field-driven homogeneously aligned liquid crystal cell with positive dielectric anisotropy,” Jpn. J. Appl. Phys. 44(9A), 6581–6586 (2005). 6. S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998). 7. Z. Ge, S. T. Wu, S. S. Kim, J. W. Park, and S. H. Lee, “Thin cell fringe-field-switching liquid crystal display with a chiral dopant,” Appl. Phys. Lett. 92(18), 181109 (2008). 8. J. Li, C. H. Wen, S. Gauza, R. Lu, and S. T. Wu, “Refractive indices of liquid crystals for display applications,” J. Display Technol. 1(1), 51–61 (2005). 9. H. Takatsu, “Advanced liquid crystal materials for active matrix displays,” Conf. Proc. Advanced Display Materials and Devices, p.43 (Sendai, Japan, 2014). 10. J. Li, M. Hu, J. Li, Z. An, X. Yang, Z. Yang, and Z. Che, “Highly fluorinated liquid crystals with wide nematic phase interval and good solubility,” Liq. Cryst. 41(12), 1783–1790 (2014). 11. M. Schadt, R. Buchecker, and K. Muller, “Material properties, structural relations with molecular ensembles and electro-optical performance of new bicyclohexane liquid crystals in field-effect liquid crystal displays,” Liq. Cryst. 5(1), 293–312 (1989). 12. J. W. Ryu, J. Y. Lee, H. Y. Kim, J. W. Park, G. D. Lee, and S. H. Lee, “Effect of magnitude of dielectric anisotropy of a liquid crystal on light efficiency in the fringe-field switching nematic liquid crystal cell,” Liq. Cryst. 35(4), 407–411 (2008). 13. S. T. Wu and C. S. Wu, “Experimental confirmation of the Osipov-Terentjev theory on the viscosity of nematic liquid crystals,” Phys. Rev. A 42(4), 2219–2227 (1990). 14. S. W. Kang, I. W. Jang, D. H. Kim, Y. J. Lim, and S. H. Lee, “Enhancing transmittance of fringe-field switching liquid crystal device by controlling perpendicular component of dielectric constant of liquid crystal,” Jpn. J. Appl. Phys. 53(1), 010304 (2014). 15. H. Chen, F. Peng, Z. Luo, D. Xu, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “High performance liquid crystal displays with a low dielectric constant material,” Opt. Mater. Express 4(11), 2262–2273 (2014). 16. S. T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A 33(2), 1270–1274 (1986). 17. S. T. Wu, U. Efron, and L. D. Hess, “Birefringence measurements of liquid crystals,” Appl. Opt. 23(21), 3911– 3915 (1984). #232795 $15.00 USD Received 18 Jan 2015; revised 19 Feb 2015; accepted 19 Feb 2015; published 25 Feb 2015 (C) 2015 OSA 1 Mar 2015 | Vol. 5, No. 3 | DOI:10.1364/OME.5.000655 | OPTICAL MATERIALS EXPRESS 655 18. I. Haller, “Thermodynamic and static properties of liquid crystals,” Prog. Solid State Chem. 10(2), 103–118 (1975). 19. M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67(26), 3895–3897 (1995). 20. Y. Chen, F. Peng, T. Yamaguchi, X. Song, and S. T. Wu, “High performance negative dielectric anisotropy liquid crystals for display applications,” Crystals 3(3), 483–503 (2013). 21. L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer-Verlag, 1994). 22. S. T. Wu and C. S. Wu, “Rotational viscosity of nematic liquid crystals A critical examination of existing models,” Liq. Cryst. 8(2), 171–182 (1990). 23. W. H. De Jeu, “Physical properties of liquid crystalline materials in relation to their applications,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 63(1), 83–109 (1981). 24. L. Rao, S. Gauza, and S. T. Wu, “Low temperature effects on the response time of liquid crystal displays,” Appl. Phys. Lett. 94(7), 071112 (2009).
منابع مشابه
Submillisecond-response nematic liquid crystals for augmented reality displays
We report a new nematic liquid crystal (LC) mixture with an ultra-low rotational viscosity (γ1 = 53.4 mPas @ 35°C), relatively high birefringence (Δn ≈0.15), and moderate dielectric anisotropy (Δε = −2.80 @ 35°C). When employed in a liquid-crystal-on-silicon (LCoS) projector with RGB light-emitting diodes (LEDs), a sub-millisecond response time is obtained without the need for complicated overd...
متن کاملMicro-viscosity of liquid oil confined in colloidal fat crystal networks.
Molecular rotors may be utilized as non-invasive, non-disruptive and highly sensitive alternatives to conventional measures of bulk viscosity when the oil is entrained in a colloidal fat crystal network. Oil viscosity changes based on the molecular confinement of the oil, which is dependent on its molecular volume. Changes in micro-viscosity were not dependent on the solids content, but instead...
متن کاملUltra Wide Band Liquid Crystal Polymer Microstrip Elliptical Patch Antenna
A microstrip elliptical patch antenna was designed on liquid crystal polymer substrate for ultra wide band wireless communications. The proposed ultra wide band antenna simply consist of an elliptical patch with coaxial feeding and liquid crystal polymer substrate of 3.16 permittivity and 0.004 dielectric loss tangent placed on the ground plane. At operating frequencies of 4.5, 6, 8 GHz, the pr...
متن کاملHigh Birefringence and Low Viscosity Liquid Crystals with Negative Dielectric Anisotropy
Fast response time is critical for reducing the image blurs in LCD TVs. A straightforward approach is to use thin cell with a high birefringence and low viscosity liquid crystal material. We have synthesized and evaluated the physical properties of some high birefringence, laterally difluorinated terphenyl compounds and mixtures. These mixtures exhibit a high birefringence (Dn 0.24) in the visi...
متن کاملAnalytical equation for the motion picture response time of display devices
Motion picture response time (MPRT) affects the image blurs of thin-film transistor (TFT) liquid crystal displays and organic light emitting diode (OLED) displays. We derive an analytical equation to correlate MPRT with the liquid crystal (LC)/OLED response time and TFT frame rate. Good agreement between our physical model and experimental results is obtained. Based on our model, we find that i...
متن کامل