Improving Knowledge Discovery Using Domain Knowledge in Unsupervised Learning
نویسنده
چکیده
Using domain knowledge in unsupervised learning has shown to be a useful strategy when the set of examples of a given domain has not an evident structure or presents some level of noise. This background knowledge can be expressed as a set of classification rules and introduced as a semantic bias during the learning process. In this work we present some experiments on the use of partial domain knowledge in conceptual clustering. The domain knowledge (or domain theory) is used to select a set of examples that will be used to start the learning process, this knowledge has not to be complete neither consistent. This bias will increase the quality of the final groups and reduce the effect of the order of the examples. Some measures of stability of classification are used as evaluation method. The improvement of the acquired concepts can be used to improve and correct the domain knowledge. A set of heuristics to revise the original domain theory has been experimented, yielding to some interesting results.
منابع مشابه
Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملAn Unsupervised Learning Method for an Attacker Agent in Robot Soccer Competitions Based on the Kohonen Neural Network
RoboCup competition as a great test-bed, has turned to a worldwide popular domains in recent years. The main object of such competitions is to deal with complex behavior of systems whichconsist of multiple autonomous agents. The rich experience of human soccer player can be used as a valuable reference for a robot soccer player. However, because of the differences between real and simulated soc...
متن کاملخوشهبندی اسناد مبتنی بر آنتولوژی و رویکرد فازی
Data mining, also known as knowledge discovery in database, is the process to discover unknown knowledge from a large amount of data. Text mining is to apply data mining techniques to extract knowledge from unstructured text. Text clustering is one of important techniques of text mining, which is the unsupervised classification of similar documents into different groups. The most important step...
متن کاملAn Empirical Evaluation of Automated Knowledge Discovery in a Complex Domain
Automatically acquiring knowledge in complex and possibly dynamic domains is an interesting, non-trivial problem. Case-based reasoning (CBR) systems are particularly well suited to the tasks of knowledge discovery and exploitation, and a rich set of methodologies and techniques exist to exploit the existing knowledge in a CBR system. However, the process of automatic knowledge discovery appears...
متن کاملLearning non-taxonomic relationships from web documents for domain ontology construction
In recent years, much effort has been put in ontology learning. However, the knowledge acquisition process is typically focused in the taxonomic aspect. The discovery of non-taxonomic relationships is often neglected, even though it is a fundamental point in structuring domain knowledge. This paper presents an automatic and unsupervised methodology that addresses the non-taxonomic learning proc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000