Tree-Structured Neural Machine for Linguistics-Aware Sentence Generation

نویسندگان

  • Ganbin Zhou
  • Ping Luo
  • Rongyu Cao
  • Yijun Xiao
  • Fen Lin
  • Bo Chen
  • Qing He
چکیده

Different from other sequential data, sentences in natural language are structured by linguistic grammars. Previous generative conversational models with chain-structured decoder ignore this structure in human language and might generate plausible responses with less satisfactory relevance and fluency. In this study, we aim to incorporate the results from linguistic analysis into the process of sentence generation for high-quality conversation generation. Specifically, we use a dependency parser to transform each response sentence into a dependency tree and construct a training corpus of sentencetree pairs. A tree-structured decoder is developed to learn the mapping from a sentence to its tree, where different types of hidden states are used to depict the local dependencies from an internal tree node to its children. For training acceleration, we propose a tree canonicalization method, which transforms trees into equivalent ternary trees. Then, with a proposed tree-structured search method, the model is able to generate the most probable responses in the form of dependency trees, which are finally flattened into sequences as the system output. Experimental results demonstrate that the proposed X2TREE framework outperforms baseline methods over 11.15% increase of acceptance ratio.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Word-Order Issues in English-to-Urdu Statistical Machine Translation

We investigate phrase-based statistical machine translation between English and Urdu, two Indo-European languages that differ significantly in their word-order preferences. Reordering of words and phrases is thus a necessary part of the translation process. While local reordering is modeled nicely by phrase-based systems, long-distance reordering is known to be a hard problem. We perform experi...

متن کامل

Neural Tree Indexers for Text Understanding

Recurrent neural networks (RNNs) process input text sequentially and model the conditional transition between word tokens. In contrast, the advantages of recursive networks include that they explicitly model the compositionality and the recursive structure of natural language. However, the current recursive architecture is limited by its dependence on syntactic tree. In this paper, we introduce...

متن کامل

Do latent tree learning models identify meaningful structure in sentences?

Recent work on the problem of latent tree learning has made it possible to train neural networks that learn to both parse a sentence and use the resulting parse to interpret the sentence, all without exposure to groundtruth parse trees at training time. Surprisingly, these models often perform better at sentence understanding tasks thanmodels that use parse trees from conventional parsers. This...

متن کامل

Linguistic Heuristics in Word Alignment

The IBM statistical machine translation (SMT) models [Brown et al.1993] have been extremely influential in computational linguistics in the past decade. The (arguably) most striking characteristic of the IBM-style SMT models is their total lack of inherent linguistic knowledge. The IBM models demonstrated how much one can do with pure statistical techniques. This has inspired a whole new genera...

متن کامل

Discourse Structure in Machine Translation Evaluation

In this article, we explore the potential of using sentence-level discourse structure for machine translation evaluation. We first design discourse-aware similarity measures, which use allsubtree kernels to compare discourse parse trees in accordance with the Rhetorical Structure Theory (RST). Then, we show that a simple linear combination with these measures can help improve various existing m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1705.00321  شماره 

صفحات  -

تاریخ انتشار 2017