On Self-adjoint and J-self-adjoint Dirac-type Operators: A Case Study
نویسندگان
چکیده
We provide a comparative treatment of some aspects of spectral theory for self-adjoint and non-self-adjoint (but J-self-adjoint) Dirac-type operators connected with the defocusing and focusing nonlinear Schrödinger equation, of relevance to nonlinear optics. In addition to a study of Dirac and Hamiltonian systems, we also introduce the concept of Weyl–Titchmarsh half-line m-coefficients (and 2 × 2 matrix-valued M -matrices) in the non-self-adjoint context and derive some of their basic properties. We conclude with an illustrative example showing that crossing spectral arcs in the non-self-adjoint context imply the blowup of the norm of spectral projections in the limit where the crossing point is approached.
منابع مشابه
Error bounds in approximating n-time differentiable functions of self-adjoint operators in Hilbert spaces via a Taylor's type expansion
On utilizing the spectral representation of selfadjoint operators in Hilbert spaces, some error bounds in approximating $n$-time differentiable functions of selfadjoint operators in Hilbert Spaces via a Taylor's type expansion are given.
متن کاملA note on $lambda$-Aluthge transforms of operators
Let $A=U|A|$ be the polar decomposition of an operator $A$ on a Hilbert space $mathscr{H}$ and $lambdain(0,1)$. The $lambda$-Aluthge transform of $A$ is defined by $tilde{A}_lambda:=|A|^lambda U|A|^{1-lambda}$. In this paper we show that emph{i}) when $mathscr{N}(|A|)=0$, $A$ is self-adjoint if and only if so is $tilde{A}_lambda$ for some $lambdaneq{1over2}$. Also $A$ is self adjoint if and onl...
متن کاملAbstract Wave Equations and Associated Dirac-type Operators
WAVE EQUATIONS AND ASSOCIATED DIRAC-TYPE OPERATORS FRITZ GESZTESY, JEROME A. GOLDSTEIN, HELGE HOLDEN, AND GERALD TESCHL Abstract. We discuss the unitary equivalence of generators GA,R associated with abstract damped wave equations of the type ü+Ru̇+A∗Au = 0 in some Hilbert spaceH1 and certain non-self-adjoint Dirac-type operatorsQA,R (away from the nullspace of the latter) in H1 ⊕ H2. The operat...
متن کاملOn the Dirac and Pauli Operators with Several Aharonov-bohm Solenoids
We study the self-adjoint Pauli operators that can be realized as the square of a self-adjoint Dirac operator and correspond to a magnetic field consisting of a finite number of Aharonov-Bohm solenoids and a regular part, and prove an Aharonov-Casher type formula for the number of zero-modes for these operators. We also see that essentially only one of the Pauli operators are spin-flip invarian...
متن کاملOn Matrix-valued Herglotz Functions
We provide a comprehensive analysis of matrix-valued Herglotz functions and illustrate their applications in the spectral theory of self-adjoint Hamiltonian systems including matrix-valued Schrödinger and Dirac-type operators. Special emphasis is devoted to appropriate matrix-valued extensions of the well-known Aronszajn-Donoghue theory concerning support properties of measures in their Nevanli...
متن کامل