Differences in protein mobility between pioneer versus follower growth cones.

نویسندگان

  • Rajan P Kulkarni
  • Magdalena Bak-Maier
  • Scott E Fraser
چکیده

Navigating growth cones need to integrate, process and respond to guidance signals, requiring dynamic information transfer within and between different compartments. Studies have shown that, faced with different navigation challenges, growth cones display dynamic changes in growth kinetics and morphologies. However, it remains unknown whether these are paralleled by differences in their internal molecular dynamics. To examine whether there are protein mobility differences during guidance, we developed multiphoton fluorescence recovery after photobleaching methods to determine molecular diffusion rates in pathfinding growth cones in vivo. Actively navigating growth cones (leaders) have consistently longer recovery times than growth cones that are fasciculated and less actively navigating (followers). Pharmacological perturbations of the cytoskeleton point to actin as the primary modulator of diffusion in differently behaving growth cones. This approach provides a powerful means to quantify mobility of specific proteins in neurons in vivo and reveals that diffusion is important during axon navigation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Axon fasciculation and differences in midline kinetics between pioneer and follower axons within commissural fascicles.

Early neuronal scaffold development studies suggest that initial neurons and their axons serve as guides for later neurons and their processes. Although this arrangement might aid axon navigation, the specific consequence(s) of such interactions are unknown in vivo. We follow forebrain commissure formation in living zebrafish embryos using timelapse fluorescence microscopy to examine quantitati...

متن کامل

Pioneer growth cone morphologies reveal proximal increases in substrate affinity within leg segments of grasshopper embryos.

We have compared the morphologies of approximately 5000 antibody-labeled afferent pioneer growth cones fixed at various stages of growth along their characteristic path over the epithelium in the legs of grasshopper embryos, and have used growth cone morphology as an indicator of differences in the affinity of the epithelial substrate for pioneer growth cones in vivo. Growth cone morphologies d...

متن کامل

The influence of pioneer neurons on a growing motor nerve in Drosophila requires the neural cell adhesion molecule homolog FasciclinII.

The phenomenon of pioneer neurons has been known for almost a century, but so far we have little insights into mechanisms and molecules involved. Here, we study the formation of the Drosophila intersegmental motor nerve (ISN). We show that aCC/RP2 and U motor neurons grow together at the leading front of the ISN. Nevertheless, aCC/RP2 neurons are the pioneers, and U neurons are the followers, b...

متن کامل

The Flamingo ortholog FMI-1 controls pioneer-dependent navigation of follower axons in C. elegans.

Development of a functional neuronal network during embryogenesis begins with pioneer axons creating a scaffold along which later-outgrowing axons extend. The molecular mechanism used by these follower axons to navigate along pre-existing axons remains poorly understood. We isolated loss-of-function alleles of fmi-1, which caused strong axon navigation defects of pioneer and follower axons in t...

متن کامل

Targeted neuronal cell ablation in the drosophila embryo: Pathfinding by follower growth cones in the absence of pioneers

We developed a rapid method that uses diphtheria toxin, the flp recognition target sequences, and the GAL4-UAS activation system, to ablate specific neurons in the Drosophila embryo and to examine the consequences in large numbers of embryos at many time points. We used this method to show that, in the absence of the aCC axon, which pioneers the intersegmental nerve in the PNS, the three U foll...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 4  شماره 

صفحات  -

تاریخ انتشار 2007